• Title/Summary/Keyword: Marine Traffic Volume

Search Result 103, Processing Time 0.02 seconds

On the Analysis of Transportation System in Mokpo Port (목포항 운송시스템의 분석에 관한 연구)

  • Nam, M.U.;Lee, C.Y.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.321-337
    • /
    • 1997
  • Rapid change in the technological environment of marine transportation and the development of the ocean shipping industry have fostered a revolution in the port system. This in turn has caused major changes in the function and use of port in Korea. Aside from this. Mokpo Port, however continues to decline, because the existing port facilities and related subsystem are already obsolete with no chance of regaining operational effectiveness and treatment for proper implementation. Although a few studies have been done on the Mokpo Port, has not been found, any reseach for the analytical approach to the transportation system of it. This paper aims to make an extensive analysis of the physical distribution system in Mokpo Port focusing on the coordination of subsystems such as navigational aids system, quay handling and transfer system, storage system and inland transport system. The base of introduced simulation tool here is the queueing theory. The overall findings are as follows; 1. Among those vessels called at Mokpo Port in 1994, the average size of oceangoing vessels is 4,922.1 G/T, and the domestic is 317.8 G/T. The average arrival interval and service time of the domestic vessels are 6.0 hours and 24.1 hours respectively marking the berth occupation rate over 100%. Those for oceangoing vessels are 34.5 hours, 120.0 hours and 37.2%. In order to maintainin the berth occupation rate to 70% the capacity considering the 1994 of domestic piers must be extended to 145% and oceangoing vessels must be increased to 165% year called. 2. The capacity of approaching channel is enough to handle the total traffic volume. 3. Tugs are sufficiently being provided to handle all ships requiring their services 4. The capacity of storage and inland transportation systems are sufficient to handle the throughput and the yard stroage utilization rate of No.1 $\cdots$ No.5 is 4.5% and No.6 1S 30% of 1993's. 5. The utilization rate of LLc(Level Looping Crane) and PNT(PNeumaTic) are 2.7% and 18.8%, respectively. Practical solution and proposal for improvement of Transportation System in Mokpo Port are as follows; 1. To avoid the congestion in domestic pier introduction of a new port operation system is necessary allowing the domestic vessel to use the oceangoing pier. 2. To establish the port management information system to improve the efficiency of port operation. 3. To build a new storage system for high valued cargos including modernization of the present storage and handling system. 4. To insure the safety of navigation in approaching channel, The Vessel Traffic System including separation scheme is introduced. 5. To interest enormously on public relation to ship owner's association, shippers and consignees by showing that they can save cost and ship turnaround time in order to promote the call to Mokpo Port. At last, to be strategically change the function of Mokpo Port to the Leisure, Fishing & Ferry as well as Maritime port.

  • PDF

Selection of Light Character for Marking with Lights on Offshore Wind Farms (해양풍력발전단지 표지등광의 등질선정에 관한 연구)

  • Yang, Hyoung-Seon
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.105-110
    • /
    • 2014
  • Korean government sets up a goal that jumps up to the third ranked powerful nation of offshore wind in the world until 2020 and announced "The plan for 2.5-gigawatt wind farm off the south-west coast by 2019". Such above, according to green energy policy, offshore wind farms(OWF) will be increased continuously. The development of OWF should be taken account of wind volume as well as marine traffic environment. Specially aids to navigation of OWF play a significant role in preventing collision between vessels navigating near waters and structures. For purpose of distinguishing OWF, IALA recommendations define installation of lights on SPS and IPS. However, there is no mention of light character that plays important role in identification of lights as marking offshore wind farm. Also the research on selection of proper light character has been insufficient state. Therefore in this paper, we analyzed internal and external regulations concerned marking with light on SPS and IPS in OWF. And suggested patterns and rhythms of light having not only easily recognized feature but also no confusion with other light of aids to navigation. The proposed light characters were verified by simulation, and the results were analysed that synchronism flickering of "Fl Y(4) 12s(SPS)" and "Fl Y 6s(IPS)" would be useful in combination of both lights.

Real-time Reefer Container Control Device Using M2M Communication (M2M통신을 이용한 실시간 냉동컨테이너 제어 장비)

  • Moon, Young-Sik;Choi, Sung-Pill;Lee, Eun-Kyu;Kim, Tae-Hoon;Lee, Byung-Ha;Kim, Jae-Joong;Choi, Hyung-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2216-2222
    • /
    • 2014
  • A recent trend of increasing container traffic volume using reefer container demands continuous management of reefer container in transit. However, reefer containers can only be monitored at terminal or in ship during marine transportation instead of throughout entire section. In the case of inland transportation section using truck or train, monitoring is not possible currently. The reason is because the reefer container monitoring method using PCT recommended by IMO and conventional monitoring methods using TCP/IP, RFID communication require establishing additional communication infrastructure. This paper will propose a new reefer container control device that not only solves these problems and monitors during inland transportation section but also controls reefer container. Using data port attached to every reefer container, the proposed device collects the information of reefer container and using M2M communication technology, it transmits information to server without the need to establish additional communication infrastructure. In addition, it can control the operational status of reefer container upon receiving control information set in server such as temperature of reefer container.