• 제목/요약/키워드: Marine Structures

검색결과 1,274건 처리시간 0.026초

해양 구조물용 고장력강의 부식피로특성 (Characteristic of Corrosion Fatigue of High Strength Steel for Marine Structures)

  • 최성대;;;정선환;이종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2003
  • Fatigue strength. especially crack initiation behavior of high strength steel under marine water environment was investigated. Marine structures were usually constructed by lot of weld joints and were designed by basis of the fatigue strength of weld joints. This study was carried out to mini. The fatigue initiation behavior is more important rather than crack propagation behavior under the design of marine structures, because it is very difficult to find out the crack propagation phenomena and repair the damaged part of welded joints in sea water Then, the new configuration specimen for fatigue crack initiation tests was proposed. Using this new specimen, it is easy to carry out the crack initiation tests with relatively low cycling loading and clearly find out a crack initiation fatigue life.

  • PDF

A investigation on the responses of conductive structures of Korean Peninsula using EM modeling

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 한국지구과학회 2004년도 춘계학술발표회 논문집
    • /
    • pp.52-57
    • /
    • 2004
  • Korean Peninsula located between Japan and China where earthquakes frequently occur, have little geophysical observation despite its tectonic importance. This study suggests the inland conductive structures inferred from GDS data measured in Korean Peninsula and try to interpret induction arrows quantitatively with the aid of 2- and 3-D geomagnetic induction modeling. Ogcheon Belt (OCB) and Imjin River Belt (IRB) are regarded as main conductive structures in Korea Peninsula, the induction arrows for the period of 60 minutes show very weak anomaly due to sea effect, which is supported by the results of 3-modeling also. However, for the period of 10 minutes, induction arrows at YIN and ICHN show anomalous patterns considered as the effect of IRB in spite of sea effect. The results of 2-D modeling which simplify geological situations provide overall information on IRB

  • PDF

해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가 (Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition)

  • 양은익;김명유;이동근;한상훈
    • 한국해안해양공학회지
    • /
    • 제19권4호
    • /
    • pp.320-328
    • /
    • 2007
  • 해양콘크리트구조물의 내구성은 일반적으로 해수의 침식 작용과 콘크리트 내부로 침투하는 염분의 확산에 따른 부식에 의해 크게 피해를 입으며, 이러한 내구성 저하는 해양콘크리트구조물의 과다한 유지 관리비를 초래하게 된다. 따라서 해양구조물의 내구성 증진을 위하여 고내구성 재료의 사용이 검토되고 있다. 본 연구에서는, 광물질 혼화재(실리카흄, 플라이애쉬, 고로슬래그미분말)와 표면처리 철근(스테인리스 봉강, 에폭시 코팅) 그리고 부식억제제를 사용한 해양콘크리트의 부식저항 특성을 전기화학적기법을 이용하여 비교 검토하였다. 또한 고내구성 재료사용에 따른 내구성 증진효과를 정량적으로 제안하였다.

Approximate seismic displacement capacity of piles in marine oil terminals

  • Goel, Rakesh K.
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.129-146
    • /
    • 2010
  • This paper proposes an approximate procedure to estimate seismic displacement capacity - defined as yield displacement times the displacement ductility - of piles in marine oil terminals. It is shown that the displacement ductility of piles is relatively insensitive to most of the pile parameters within ranges typically applicable to most piles in marine oil terminals. Based on parametric studies, lower bound values of the displacement ductility of two types of piles commonly used in marine oil terminals - reinforced-concrete and hollow-steel - with either pin connection or full-moment-connection to the deck for two seismic design levels - Level 1 or Level 2 - and for two locations of the hinging in the pile - near the deck or below the ground - are proposed. The lower bound values of the displacement ductility are determined such that the material strain limits specified in the Marine Oil Terminal Engineering and Maintenance Standard (MOTEMS) are satisfied at each design level. The simplified procedure presented in this paper is intended to be used for preliminary design of piles or as a check on the results from the detailed nonlinear static pushover analysis procedure, with material strain control, specified in the MOTEMS.

Recent Discovery of Bioactive Natural Products from Taiwanese Marine Invertebrates

  • Shen, Ya-Ching
    • 한국해양바이오학회지
    • /
    • 제1권4호
    • /
    • pp.225-231
    • /
    • 2006
  • The secondary metabolites from Taiwanese marine soft corals and sponges have attracted much attention because they possess considerable potential biological activities. To explore the origin of bioactivity, many cytotoxic natural products were isolated and characterized in the past few years. For examples, The lipophilic extracts from marine sponges Petrosia elastica and Ircinia formosana were found active against several human tumor cells. The investigation of the gorgonian Junceela has also resulted in the discovery of a series of new juncenolides. Bioassay-directed fractionation of Clavularia viridis yielded seven new prostanoids. These compounds have been tested and evaluated as potential antitumor agents. The soft corals of the genus Cespitularia produced novel secondary metabolites with diverse chemical structures and interesting biological activities. Four new norditerpenoids, designated cespitulactones and cespihypotins were isolated from Cespitularia hypotentaculata. Cespitulactones are novel structures having a bond cleavage between C-10 and C-11. In addition, three novel diterpenes were isolated from C. taeniata and designated cespitulactams A, B and C having a phenylethyl amino side chain.

  • PDF

Comparision of antioxidant and anti-inflammatory activities of enzyme assisted hydrolysate from Ecklonia maxima blades and stipe

  • Lee, Hyo-Geun;Je, Jun-Geon;Hwang, Jin;Jayawardena, Thilina U.;Nagahawatta, D.P.;Lu, Yu An;Kim, Hyun-Soo;Kang, Min-Cheol;Lee, Dae-Sung;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제24권5호
    • /
    • pp.197-206
    • /
    • 2021
  • Marine brown seaweeds are a source of functional ingredients with various biological properties. They have been used in the food and functional food industries. Brown seaweeds are divided into three parts of blades, stipe, and root. Normally seaweed blades were used as raw materials for biological research. However, there are limited uses on stipes of Ecklonia maxima (E. maxima) depending on the physicochemical, nutritional, and biological properties. Besides, the comparative studies of two structures of E. maxima, blades and stipe didn't discover previously. This study aimed to compare the potent antioxidant and anti-inflammatory activities of the two structures of E. maxima, blades and stipe in vitro studies to increase the utilization of the two structures of E. maxima. The enzyme-assisted hydrolysate from E. maxima showed significant antioxidant and anti-inflammatory activities. Among them, celluclast-assisted hydrolysate from E. maxima blades (EMBC) and viscozyme-assisted hydrolysate from E. maxima stipe (EMSV) expressed significant protection on hydrogen peroxide-induced oxidative stress. Moreover, EMBC and EMSV treatment remarkably reduced nitric oxide production by downregulation of pro-inflammatory cytokine expressions in lipopolysaccharide-stimulated Raw 264.7 cells. Especially EMBC showed strong inhibition on pro-inflammatory cytokine production compared to EMSV. Taken together research findings suggest that EMBC and EMSV possessed potent antioxidant and anti-inflammatory properties and may be utilized as functional ingredients in the food and functional food sectors.

Assessment of some parameters of corrosion initiation prediction of reinforced concrete in marine environments

  • Moodi, Faramarz;Ramezanianpour, Aliakbar;Jahangiri, Ehsan
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.71-82
    • /
    • 2014
  • Chloride ion ingress is one of the major problems that affect the durability of concrete structures such as bridge decks, concrete pavements, and other structures exposed to harsh saline environments. Therefore, durability based design of concrete structures in severe condition has gained great significance in recent decades and various mathematical models for estimating the service life of rein-forced concrete have been proposed. In spite of comprehensive researches on the corrosion of rein-forced concrete, there are still various controversial concepts in quantitation of durability parameters such as chloride diffusion coefficient and surface chloride content. Effect of environment conditions on the durability of concrete structures is one of the most important issues. Hence, regional investigations are necessary for durability based design and evaluation of the models. Persian Gulf is one of the most aggressive regions of the world because of elevated temperature and humidity as well as high content of chloride ions in seawater. The aim of this study is evaluation of some parameters of durability of RC structures in marine environment from viewpoint of corrosion initiation. For this purpose, some experiments were carried out on the real RC structures and in laboratory. The result showed that various uncertainties in parameters of durability were existed.

Numerical Investigation of Countermeasure Effects on Overland Flow Hydrodynamic and Force Mitigation in Coastal Communities

  • Hai Van Dang;Sungwon Shin;Eunju Lee;Hyoungsu Park;Jun-Nyeong Park
    • 한국해양공학회지
    • /
    • 제36권6호
    • /
    • pp.364-379
    • /
    • 2022
  • Coastal communities have been vulnerable to extreme coastal flooding induced by hurricanes and tsunamis. Many studies solely focused on the overland flow hydrodynamic and loading mechanisms on individual inland structures or buildings. Only a few studies have investigated the effects of flooding mitigation measures to protect the coastal communities represented through a complex series of building arrays. This study numerically examined the performance of flood-mitigation measures from tsunami-like wave-induced overland flows. A computational fluid dynamic model was utilized to investigate the performance of mitigation structures such as submerged breakwaters and seawalls in reducing resultant forces on a series of building arrays. This study considered the effects of incident wave heights and four geometrically structural factors: the freeboard, crest width of submerged breakwaters, and the height and location of seawalls. The results showed that prevention structures reduced inundation flow depths, velocities, and maximum forces in the inland environment. The results also indicated that increasing the seawall height or reducing the freeboard of a submerged breakwater significantly reduces the maximum horizontal forces, especially in the first row of buildings. However, installing a low-lying seawall closer to the building rows amplifies the maximum forces compared to the original seawall at the shoreline.

항만구조물의 비파괴시험에 의한 안정성 검토 (The Evaluation of Durability by NDT test of Marine-Concrete Structures)

  • 조병완;이일근;강희풍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.169-172
    • /
    • 1995
  • Establishment of a diagnosing technology for the deterioration of reinforced concrete structures due to salt contamination is urgent, but few analytical methods based on measured data obtained from concrete structures have been presented so far. Chloride penetration into concrete from sea water is generally understood and analysed as diffusion of chloride ion. This paper presents a new method of predicting chloride penetration into concrete based on diffusion theory. Also, it determines the duralility of Marine structure in service with the prediction of remaiing lifetime by the carvonation test.

  • PDF