• Title/Summary/Keyword: Marine Spatial Data

Search Result 269, Processing Time 0.019 seconds

Wavelet Based Matching Pursuit Method for Interpolation of Seismic Trace with Spatial Aliasing (공간적인 알리아싱을 포함한 탄성파 트레이스의 내삽을 위한 요소파 기반의 Matching Pursuit 기법)

  • Choi, Jihun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • Due to mechanical failure or geographical accessibility, the seismic data can be partially missed. In addition, it can be coarsely sampled such as crossline of the marine streamer data. This seismic data that irregular sampled and spatial aliased may cause problems during seismic data processing. Accurate and efficient interpolation method can solve this problem. Futhermore, interpolation can save the acquisition cost and time by reducing the number of shots and receivers. Among various interpolation methods, the Matching Pursuit method can be applied to any sampling type which is regular or irregular. However, in case of using sinusoidal basis function, this method has a limitation in spatial aliasing. Therefore, in this study, we have developed wavelet based Matching Pursuit method that uses wavelet instead of sinusoidal function for the improvement of dealiasing performance. In addition, we have improved interpolation speed by using inner product instead of L-2 norm.

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF

Species Composition and Spatial Distribution of Euphausiids of the Yellow Sea and Relationships with Environmental Factors

  • Yoon, Won-Duk;Yang, Joon-Yong;Lim, Dong-Hyun;Cho, Sung-Hwan;Park, Gyung-Soo
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.11-29
    • /
    • 2006
  • We investigated species composition and spatial distribution of the euphausiid community in the Yellow Sea and identified the relationship with environmental factors (temperature, salinity, chlorophyll $\alpha$, nitrate, phosphate, and silicate) using bimonthly data from June, 1997 to April, 1998. The environment varied during the sampling period. In warm seasons, thermocline was well developed rendering lower temperature and higher salinity and nutrient concentrations in the bottom layer. During cold seasons the water column was well mixed and no such vertical stratification was noted. Horizontal distribution of temperature, however, differed slightly between near-coast and offshore areas because of the shallow depth of the Yellow Sea, and between southern and northern areas because of the intrusion of water masses such as Yellow Sea Warm Current and Changjiang River Diluted Water. Four euphausiid species were identified: Euphausia pacifica, E. sanzoi, Pseudeuphausia sp. and Stylocheron affine. E. sanzoi and S. affine were collected, just one juvenile each, from the southern area in June and December, respectively. Pseudeuphausia sp. were collected in the eastern area all the year round except June. E. pacifica occurred at the whole study area and were the predominant species, representing at least 97.6% of the euphausiid abundance. Further, the distribution pattern of the species was varied in regards to developmental stages (adult, furcilia, calyptopis, egg). From spring to fall, E. pacifica adults were abundant in the central area where the Yellow Sea Bottom Cold Water prevailed. Furcilia and calyptopis extended their distribution into nearly all the study area during the same period. From late fall to winter, adults were found at the near-coastal are a with similar pattern for furcilia and calyptopis. The distribution pattern of E. pacifica was consistent regarding temperature, salinity, and three nutrients during the sampling period, whereas chlorophyll $\alpha$ showed a different pattern according to the developmental stages. The nutrients should indirectly affect via chlorophyll $\alpha$ and phytoplankton concentration. With respect to these results, we presented a scenario about how the environmental factors along with the water current affect the distribution of E. pacifica in the Yellow Sea.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Spatial Variability of in situ and GOCI and MODIS Chlorophyll and CDOM in Summer at the East Sea (여름철 동해의 현장측정치와 GOCI와 MODIS 위성 자료로 측정한 엽록소와 유색용존유기물의 공간 변동성)

  • Park, Mi-Ok;Shin, Woo-Chul;Son, Young-Baek;Noh, Tae-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.327-338
    • /
    • 2015
  • Because of impact on the underwater light field, CDOM can influence the accuracy of global satellite-based measurement of ocean chlorophyll and primary productivity. So we investigated the distribution and seasonal variation of CDOM in the East Sea during summer 2009 and 2011. Among them we report two distinctively different summer cases between 2009 and 2011 year, in which showed the different main sources for CDOM. Regulating factors and sources of CDOM in the East Sea were examined. Comparison between in situ and satellite derived Chl a and CDOM were made to find an influence of CDOM on measurement of satellite derived Chl a. Similar pattern and matching of MODIS Chl a with in situ Chl a 2009 was comparable, but significant discrepancy between MODIS Chl a and in situ Chl a was found, when CDOM was high in summer of 2011. GOCI data showed better matching with in situ data for both Chl a and CDOM, compared to MODIS data in summer of 2011. The presence of high CDOM at the surface layer supplied by vertical mixing seems to affect on the overestimation of Chl a by satellite data.

Uncertainty Analysis of Soft Ground Using Geostatistical Kriging Method (지구통계학 크리깅 기법을 이용한 연약지반의 불확실성 분석)

  • Yoon Gil-Lim;Lee Kang-Woon;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.5-17
    • /
    • 2005
  • Spatial uncertainty of Busan marine clay ground, which commonly occurs during site investigation testing, data analysis and transformation modeling, has been described. In this paper geotechnical uncertainty of shear strength indicator $N_k$ has been quantified in both horizontal direction and vertical direction using geostatistical Kriging method. Most of soil data used are from 25 boring tests, 75 laboratory tests, 124 field vane tests and 25 cone penetration tests (CPT). CPT-$N_k$ data for undrained shear strength determination, which are the most important properties in geotechnical design stages, have been analysed. Comparison between cone factor from conventional CPT-based method and that of geostatistical method shows that geostatistical Kriging method is an ideal tool to quantify the spatial variability of uncertainty from self-correlation of soil property of interest, and can be recommended to identify the spatial distribution of consolidation .md shear strength of soils at any sites concerned.

Fundamental Research on Spring Season Daytime Sea Fog Detection Using MODIS in the Yellow Sea

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.339-351
    • /
    • 2016
  • For the safety of sea, it is important to monitor sea fog, one of the dangerous meteorological phenomena which cause marine accidents. To detect and monitor sea fog, Moderate Resolution Imaging Spectroradiometer (MODIS) data which is capable to provide spatial distribution of sea fog has been used. The previous automatic sea fog detection algorithms were focused on detecting sea fog using Terra/MODIS only. The improved algorithm is based on the sea fog detection algorithm by Wu and Li (2014) and it is applicable to both Terra and Aqua MODIS data. We have focused on detecting spring season sea fog events in the Yellow Sea. The algorithm includes application of cloud mask product, the Normalized Difference Snow Index (NDSI), the STandard Deviation test using infrared channel ($STD_{IR}$) with various window size, Temperature Difference Index(TDI) in the algorithm (BTCT - SST) and Normalized Water Vapor Index (NWVI). Through the calculation of the Hanssen-Kuiper Skill Score (KSS) using sea fog manual detection result, we derived more suitable threshold for each index. The adjusted threshold is expected to bring higher accuracy of sea fog detection for spring season daytime sea fog detection using MODIS in the Yellow Sea.

Recent Trends of Abnormal Sea Surface Temperature Occurrence Analyzed from Buoy and Satellite Data in Waters around Korean Peninsula

  • Choi, Won-Jun;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.355-364
    • /
    • 2022
  • In this study a tendency of abnormal sea surface temperature (SST) occurrence in the seas around South Korea is analyzed from daily SST data from satellite and 14 buoys from August 2020 to July 2021. As thresholds 28℃ and 4℃ are used to determine marine heatwaves(MHWs) and abnormal low water temperature (ALWT), respectively, because those values are adopted by the National Institute of Fisheries Science for the breaking news of abnormal temperature. In order to calculate frequency of abnormal SST occurrence spatially by using satellite SST, research area was divided into six areas of coast and three open seas. ALWT dominantly appeared over a wide area (7,745 km2) in Gyeonggi Bay for total 94 days and it was also confirmed from buoy temperature showing an occurrence number of 47 days. MHWs tended to be high in frequency in the coastal areas of Chungcheongdo and Jeollabukdo and the south coastal areas while in case of buoy temperature Jupo was the place of high frequency (32 days). This difference was supposed to be due to the low accuracy of satellite SST at the coasts. MHWs are also dominant in offshore waters around Korean Peninsula. Although detecting abnormal SST by using satellite SST has advantage of understanding occurrence from a spatial point of view, we also need to perform detection using buoys to increase detection accuracy along the coast.

Effects of Climate-induced Variation in the Catch Distribution and Biological Characteristics of Skipjack Tuna Katsuwonus pelamis in the Western and Central Pacific Ocean (기후변화가 중서부태평양 가다랑어(Katsuwonus pelamis)의 어획분포와 생물학적 특성에 미친 영향)

  • Kim, Eunjung;Moon, Daeyeon;Kim, Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.489-497
    • /
    • 2015
  • To reveal the spatial and temporal variability in the distribution, growth, and maturation of skipjack tuna Katsuwonus pelamis in the western tropical Pacific, we compared two El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) signals and the sea surface temperature (SST) in the main fishing area with fishery and biological data. An index of skipjack tuna distribution was calculated using Korean purse seine fishery data from 1985 to 2003. Biological data for skipjack tuna were collected monthly from Korean catches during the 1994-2003 period. The catch was more closely related to the SST in the main fishing area than to the ENSO signals. However, cross-correlated function analysis showed delayed interactions between abiotic and biotic factors. The El $Ni{\tilde{n}}o$ events preceded the eastward movement of the fishing center by 2-3 months. El $Ni{\tilde{n}}o$ had a positive effect on the skipjack tuna catch, and the change in the Southern Oscillation Index (SOI) preceded the catch fluctuation by ca. 5-7 months. In addition, negative El $Ni{\tilde{n}}o$ effects on gonad maturation and the mean length of skipjack tuna were detected with time lags of 12 and 7 months, respectively. The length frequency indicated that the regime-specific growth pattern at each discrete period seemed to be related to the ENSO.

Fresh water impact on chlorophyll a distribution at northeast coast of the Bay of Bengal analyzed through in-situ and satellite data

  • Mishra, R.K.;Senga, Y.;Nakata, K.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.122-125
    • /
    • 2006
  • The distribution of phytoplankton pigments were studied bimonthly at four stations from the mouth of Mahanadi River at Paradip to the 36.7km off coast in Bay of Bengal during April 2001 to December 2002. Bottom depth was shallower than 40m in all stations. The pigment concentration of Chl-a was measured. It increased from surface to bottom in the water column. The water column integrated chlorophyll-a concentration (Chl-a) varied between 6.1 and $48.5mg{\cdot}m-^2$ with peaks during monsoon period (Aug & Oct). Spatial distribution of salinity depended strongly on freshwater runoff. The salinity was 5psu at river mouth and 25.15psu at offshore in monsoon period; however it was 30psu at the river mouth in summer. We found a linear relationship between the amount of river discharge and integrated Chl-a in coastal region from 2 years observations. Extending this result, we analyzed rainfall and coastal Chl-a using satellite data. The relationship between the river discharge and monthly accumulated rainfall estimated from TRMM and others data sources was analyzed in 2001 and 2002 using Giovanni infrastructure provided by NASA. The result depended on the specified area on TRMM images; the river delta area had sharper relationship than wider rain catchments area. Moreover, the relationship between monthly averaged Chl-a derived from SeaWiFS and monthly accumulated rainfall estimated from TRMM was analyzed from 1998 to 2005. It was clear that the broom in monsoon period was strongly controlled by rainfall on river delta.

  • PDF