• Title/Summary/Keyword: Marine Propulsion Shafting

Search Result 81, Processing Time 0.02 seconds

Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성)

  • 이돈출;김상환;유정대
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

Design of Propulsion Shafting System for Controllable Pitch Propeller (I : Latout Design with Sizing) (가변추진기 추진축계시스템의 설계 (제 I 보 : 외형설계 ))

  • 김기인;전효중;박명규;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.129-134
    • /
    • 2002
  • This study is focused on the layout design with sizing for the main propulsion shafting with controllable pitch propeller system. For appropriate design and successful manufacturing of controllable pitch Propeller system, it is based on specifications to be required from the customer as well as the stresses calculation and analysis of main propulsion system for hollow shafting. And it must be performed according to the U.S military specifications MIL-STD-2189(SH) with drawing of NAVSHIPS 803-2145807, and also the stress analysis by applying safety factor. The results are as follows : 1. For the main propulsion system with controllable pitch propeller, it is designed the following items propeller diameter, hub diameter, dimensions of oil distribution or actuating unit based on shaft mounting type, diameters of propeller and intermediate shaft, dimension of split muff coupling, coupling flange thickness and of coupling bolt diameter. 2. As the results, we can get complete our own design ability for the main propulsion shafting with controllable pitch propeller system with critical data which are necessary to establish shafting arrangement from the ship building companies.

  • PDF

A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Cho, Kwon-Hae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선)

  • Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 비틀림진동 해석 연구)

  • Son, Seon-Tae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.

Unstable Torsional Vibration on the Propulsion Shafting System with Diesel Engine Driven Generator (디젤엔진 구동 발전기를 갖는 추진축계의 불안정한 비틀림진동)

  • 이돈출
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.936-942
    • /
    • 1999
  • Unstable torsional vibration on the marine ship's propulsion shafting system with diesel engine occurred due to a slippage of multi-friction clutch which was installed between increasing gear and shaft generator. In this paper, the mechanism of this vibration was verified via torsional, whirling, axial and structural vibration measurements of shafting system and noise measurement of gear box. And it was also identified by the theoretical analysis method.

  • PDF

A study on the propulsion shafting design of ice class vessel (대빙구조선박의 추진축계설계에 대한 연구)

  • Kim, Yang-Gon;Oh, Joo-Won;Kim, Yong-Cheol;Kim, Ue-Kan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.183-183
    • /
    • 2012
  • As as result of development of new voyage route, especially Baltic seas, it is necessary for the design to meet ice class requirements as vessels continue to increase in this route. For this reason Finish-Swedish ice class has recently amended a regulation on the propulsion shafting design and engine output required for the ships which will be navigable in the brash ice channels broken by ice-breakers in Baltic seas. Therefore, this study shows the appropriate calculation methods for the design of engine output and propulsion shafting system based on ice class requirements.

  • PDF

A Study on the Analysis of Axial Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 종진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • In this study, axial vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including wood composite material of air propeller. aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis calculated the axial natural frequencies and mode shapes of the shafting system taking into account an equivalent mass-elastic model for shafting system as well as the three-dimensional models for propeller blade and fan impeller. Such a flexible shafting system has very intricate vibrating characteristics and especially, axial natural frequencies of flexible components such as propeller blade and impeller of lift fan can be lower to the extent that causes a resonance in the range of operating revolution. The results for axial vibration analysis are presented and compared with the results of axial vibration test for lift fan conducted during Sea Trial.

A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine (디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF

A Study on the 2-node Torsional Vibration for Marine Diesel Engine Crankshaft (선박용 디젤기관 크랭크 축계의 2절 비틀림 진동에 대한 연구)

  • Choi, Moon-Keel;Park, Kun-Woo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.54-61
    • /
    • 2008
  • With the development of computer program in calculation for torsional vibration of ship's propulsion shafting it has become possible to calculate all order's vibratory amplitude, vibratory torque, vibratory stress and synthesis value at all concerned revolutions by way of solving the vibratory equation directly. Though this kind of propulsion shafting vibration calculation method makes it possible to get generalized and precise result of calculation, the unexpected critical crankshaft torsional vibration has still appeared in maneuvering range of the engine. A close investigation has been carried out to find out the cause for the 2-node propulsion shafting torsional vibration of the crankshaft that exceeded the limitation value near the MCR 104rpm on the sea trial of the recently delivered 6000TEU class container vessel from HHIC. In conclusion, as the latest super-output engine with heavy crankshaft and propeller mass seems to be liable to 2-node torsional vibration of crankshaft, it is recommend that, in the design stage of propulsion shafting, its torsional vibration condition must be more carefully checked.

  • PDF