• Title/Summary/Keyword: Marine Environmental Engineering

Search Result 1,509, Processing Time 0.028 seconds

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

Development of a safe operation capability chart as the design basis of a rudder area

  • You, Youngjun;Kim, Sewon;Kim, Woojin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.529-544
    • /
    • 2018
  • Ship owners now demand a new design approach for the rudder that considers detailed design information such as maneuverability and environmental loads etc. on a quantified basis. In this paper, we developed the concept of a safe operation capability chart for the design of a rudder area. The chart can be used as the basis of design considering the maneuverability and environmental loads. To confirm the applicability of the safe operation capability chart for use as the basis of design, four different rudders are assumed in this work. First, it is determined whether or not it is appropriate to design a rudder by applying a conventional design approach based on IMO maneuvering tests. The proposed concept is reviewed for use as the basis of the design by investigating the effect of rudder area on capability charts that are plotted according to the rudder under various environmental conditions.

Numerical Wave Tank Technology for Multipurpose Simulation in Marine Environmental Engineering (해양환경공학의 다목적 시뮬레이션을 위한 수치파랑수조 기술)

  • 박종천
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2003
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D Numerical Wave Tank(NWT). The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation. The Marker-Density function technique is adopted to implement the fully nonlinear freesurface kinematic condition. The marine environmental situations, i.e., waves, currents, etc., are reproduced by use of multi-segmented wavemakers on the basis of the so-called ″snake-principle″. In this paper, some numerical reproduction techniques for regular, and irregular waves, multi-directional waves, Bull's-eye wave. wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

Virtual Reality Technology for Multipurpose Numerical Simulation in Marine Environmental Engineering (해양환경공학의 다목적 수치시뮬레이션을 위한 Virtual Reality 기술)

  • Park, Jong-Chul
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.174-180
    • /
    • 2002
  • A virtual reality technology for multipurpose numerical simulation is developed to reproduce and investigate a variety of ocean environmental problems in a 3D-Numerical Wave Tank. The governing equations for solving incompressible fluid motion are Navier-Stokes equation and continuity equation, and the Marker-Density function technique is adopted to implement the fully-nonlinear free-surface kinematic condition. The marine environmental situations, i.e. waves, currents, wind, etc., are reproduced by use of multi-segmented wavemaker on the basis of the so-called "snake-principle". In this paper, some numerical reproduction techniques for regular and irregular waves, multi-directional waves, Bull's-eye wave, wave-current, and solitary wave are presented, and a model test in motion with large amplitude of roll angle is conducted in the developed 3D-NWT, using a overlaid grid system.

  • PDF

갯벌 보호와 이용

  • Kim, Do-Hoe;Kim, Gwang-Su;Jo, Hyeon-Seo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.04a
    • /
    • pp.176-178
    • /
    • 1998
  • PDF

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

Path Prediction and Suggestion of Efficient Collection Points for Marine Plastic Debris Based on Betweenness Centrality Analysis (매개 중심성을 이용한 해양 플라스틱 폐기물의 경로 예측 및 효율적인 수거지점 제안)

  • Jeon, Yeon Seon;Hong, Min Ji;Park, Moo Kyu;Choi, Yong-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.426-431
    • /
    • 2015
  • Korea severely suffers from plastic-induced ocean pollution, but only few studies predicted the trajectory of marine plastic debris and provided their collection method. This study used Ocean Surface CURrent Simulator (OSCURS) of National Oceanic and Atmospheric Administration (NOAA) in order to predict the trajectories of marine plastic debris flowing into the East Sea and Yellow Sea for each season during 2004 to 2013. Results suggest that efficient collection hubs through the high betweenness centrality index. Most hubs were located in the seashores regardless of season, suggesting the seashore of Uljin for the East Sea and the seashore between Saemangeum and Shinan for the Yellow Sea as the most efficient hubs.

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 2. Environmental Accounting for the Improvement of the Natural Environment Based on the Emergy Evaluation (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성평가 2. 가막만 환경개선에 관한 환경회계)

  • Oh, Hyun-Taik;Lee, Suk-MO;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.857-869
    • /
    • 2008
  • The objective of this research is to apply more scientific, quantitative methods and procedures of environmental investigation to the development of the natural environment and the improvement of the human environment during the establishment of a sewage treatment plant and special facilities using environmental accounting. This research was performed to develop a method of strategic environmental assessment on the operation of sewage treatment plant and reuse of shellfish seeding areas through the use of environmental accounting based on EMERGY evaluation. The result was applied to marine environment policy in order to evaluate the real wealth of the regional environment and economy for both the present phase and the proposed developed phase. Using results from the comparison of EMERGY indices between the present situation and future scenarios, cost benefit analysis was performed for three different scenarios: (I) construction of a new sewage treatment plant, (2) relocation and recovery of the shellfish seeding area, and (3) relocation and re-seeding of shellfish area and construction of a new sewage treatment plant. Cost-benefit ratios of the three scenarios are 1.88, 0.94, and 1.38, respectively.