• Title/Summary/Keyword: Marine Deposition Waste

Search Result 3, Processing Time 0.019 seconds

A Study on the A.I Detection Model of Marine Deposition Waste Using YOLOv5 (YOLOv5를 이용한 해양 침적쓰레기 검출 A.I 모델에 대한 연구)

  • Wang, Tae-su;Oh, Seyeong;Lee, Hyeon-seo;Jang, Jongwook;Kim, Minyoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.385-387
    • /
    • 2021
  • Marine deposition waste threatens the book ecosystem and causes a decrease in catch due to ghost fishing, causing damage of about 370 billion won per year. In order to collect this, a current status survey is conducted using two-way ultrasonic detectors, diving, and lifting frames. However, the scope of the investigation is small to investigate a lot of sedimentary waste, and there is a possibility of causing casualties. This paper deals with the implementation of a high-accuracy marine deposition detection AI model by learning the coastal sediment image data of AI-Hub using the YOLOv5 algorithm suitable for real-time object detection.

  • PDF

A Case Study on the Development of New Process for Treatment of Waste Waters from Ships (선박폐수 처리공정의 개발에 관한 사례)

  • Choi, Sang-Mo;Heo, In-Seok;Yang, Seok-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2009
  • Korea Marine Environment Management Corporation (KOEM) has waste oil facilities in 13 ports to collect and treat waste oil, bilge, etc. from ships based upon the Marine Environment Management Act of Korea and MARPOL 73/78 convention. Those facilities were designed and have been operated simply to discharge water under the level 15 ppm of oil contents. However, bad smells occurred from rotten organic matters in waste water and direct discharge of harmful substances to receiving water caused civil appeals. Therefore, KOEM tried to develop new process for treatment of oily waste water from ships, which could mitigate harmful substances, save cost, calm down civil appeals and contribute to marine environment preservation. This process consists of 3 steps to remove oil contents via gravity variation at first, $O_3$ input to contact water and organism deposition by inputting condensate deposits. Then finally upper water will be discharged, and the deposited substances in the bottom will be compressed through spinning machine to transfer to the designated contractors for treatment of wastes. This is very effective and innovative in that it could reduce 3 or 4 steps compared with existing process and mitigate not only waste oil concentration but also hard resolving materials such as colloid, ABS, phosphorus, nitrogen and bad smells. This method is expected to minimize bad smells and harmful gases, to save more than 10% of maintenance cost, and to arrange the good base for garbage treatment business dealing with waste water and bad smell.

  • PDF

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries (시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Park, Jun-Kun;Park, Chung-Kil
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.