• Title/Summary/Keyword: Marian Cove

Search Result 22, Processing Time 0.027 seconds

Holocene Glaciomarine Sedimentation in Marian Cove, King George Island, West Antarctica (서 남극 킹조지 섬 마리안 소만의 홀로세 빙해양 퇴적작용)

  • Chang, Soon-Keun;Yoon, Ho-Il
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.276-286
    • /
    • 2000
  • A 2.3 m-long core obtained from Marian Cove, King George Island in the South Shetland Islands, West Antarctica shows clues to the glaciomarine sedimentation during the Holocene. The lower part below 115cm-deep of the core is predominated by coarser material such as diamictons compared with the higher part above 105cm dominated by finer material (rhythmite and massive muds). Based on the granulometric features the coarse materials are generally supposed to be glacially-driven and basal tills, whereas the fine materials appear to originate from various sources such as meltwater-supplied, glacially-supplied, wind-blown, and organic origins. However, the presence of erratic coarse particles in the finer materials suggests the ice-rafted origin of the relevant materials. The lower part below 105cm-deep of the core was characterized by lower TN, TC, and TOC contents, and by higher TS and CaCO$_3$ contents compared with its upper part. No significant changes in C/N ratio were shown throughout the core. The ice cliff along the east side of Marian Cove seemed to locate to the west by 1.6km at 8,300 years B. P. on the basis of the repetitive occurrence of rhythmite and diamicton. Since the retreat of ice cliff in 7,970${\pm}$70 years B. P. the sediments of Marian Cove were dominated by fine materials and ice-rafted materials. The abrupt increase of coarse materials in 175cm-4 deep seems to result from supply of coarse materials due to earthquake or other drastic phenomena.

  • PDF

Water Column Structure and Dispersal Pattern of Suspended Particulate Matter (SPM) in a floating ice-dominated fjord, Marian Cove, Antarctica during Austral Summer (유빙이 점유한 남극 마리안 소만의 하계기간 수층 구조와 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Hoo-Il;Kang, Cheon-Yun;Kim, Boo-Keun;Oh, Jae-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.295-304
    • /
    • 2000
  • Vertical measurement of CTDT at about 30 min intervals and spatial surface temperature, salinity, and concentration of suspended particulate matters were conducted to elucidate the character of water column and the dispersal pattern in a floating ice-dominated fjord, Marian Cove, West Antarctica. Marian Cove showed two distinct water layers in terms of turbidity; 1) cold, fresh, and turbid surface plume in the upper 2 m,2) warm, saline, and relatively clean Maxwell Bay inflow between 15-45 m in water depth. Thermal melting of Maxwell Bay inflow and tidewater glacier/floating ices developed the surface mixed layer and the activity of floating ices cause Maxwell Bay inflow to be unstable. Due to the unstable water column, the development of Maxwell Bay inflow and subsequent surface plume are not influenced by tidal frequency. Coastal current generated by strong northwesterly wind may extend warm, saline, and turbid surface plume into the central part of the cove along the northern coast via the western coast of Weaver Peninsula. Terrigenous sediments of meltwaters from the glaciated ice cliffs near the corner of tidewater glacier and some coasts enter into the cove and their dispersion depends upon the hydrographic regimes (tide, wind, wave etc.). At the period of spring tide, the strong wind stress with the northwesterly wind direction reserve suspended sediment-fed surface plume and so allow the possibility of deposition of terrigenous sediments within the basin of cove.

  • PDF

Study on the Community Structure of Meiofauna in Marian Cove, King George Island, Antarctica (남극 King George Islands, Marian Cove의 중형저서생물 군집 구조에 관한 연구)

  • Bang Hyun Woo;Kang Sung-Ho;Lee Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.2 s.58
    • /
    • pp.191-199
    • /
    • 2005
  • The community structure, vertical distribution and harpacticoids composition of the meiofauna community were observed from five stations in Marian Cove, King George Island and one station on the northeastern side of Nelson Island. Sample was taken by a free-fall corer in December 2002. Generally, 11 taxa of meiofauna were found, and meiofauna abundance ranged from 322 to 1575 indiv. $10cm^{-2}$ (mean 781 indiv. $10cm^{-2}$). Nematodes were the most dominant group, making up $89\%$ of total meiofauna, followed by harpacticoids $(6.8\%)$. Benthic harpacticoids appeared 19 species of nine families at all the stations, and most various taxa appeared at station B (13 species of seven families). For vertical distribution, more than $70\%$ of meiofauna was concentrated in the upper $0\~2cm$ sediment layers, and the density abruptly decreased with depth in all the stations. Total biomass of meiofauna varied between 41 and $360{\mu}gC\;10cm^{-2}$, and overall mean biomass was $205{\mu}gC\;10cm^{-2}$. Also nematodes had the highest percentage of total maiofauna biomass $(62.4\%)$. The analysis results of Canonical Correspondence Analysis between meiofauna community and sediment grain size showed that polychaets, oligochaets and cumaceans were influenced by silt&cray, and sand, granule and pebble had a influence on harpacticoids, kinorhynchs and ostracods respectively. But nematodes were not affected by sediment grain size.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.

Seasonal Variations of Settling Particles and Metal Fluxes at a Nearshore Site of Marian Cove, King George Island, Antarctica (남극 킹조지섬 마리안소만에서 침강 입자와 금속 플럭스의 계절 변화)

  • Shim, Jeong-Hee;Kang, Young-Chul;Han, Myung-Woo;Kim, Dong-Seon;Chung, Ho-Sung;Lee, Sang-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.123-134
    • /
    • 2002
  • Seasonal variations of settling particles and metal fluxes were monitored at a nearshore site of Marian Cove, King Geroge Island, Antarctica from 28th February 1998 to 22nd January 2000. Near-bottom sediment traps were deployed at 30m water depth of the cove, and sampling bottles were recovered every month by SCUBA divers. Total particulate flux and metal concentrations were determined from the samples. Total particulate flux showed a distinct seasonality, high in austral summer and low in austral winter: the highest flux $(21.97g\;m^{-2}d^{-1})$ was found in February of 1999, and the lowest $(2.47g\;m^{-2}d^{-1})$ in September of 1998, when sea surface was frozen completely. Lithogenic particle flux accounted for 90% of the total flux, and showed a significantly negative correlation with the thickness of snow accumulation around the study site. It was suggested that the most of the lithogenic particles trapped in the bottles was transported by melt water stream from the surrounding land. Fluxes of Al, Fe, Ti, Mn, Zn, Cii, Co, Ni, Cr, Cd, and Pb showed similar seasonal variations with the total flux, and their averaged fluxes were 34000, 9000,960, 180, 13.8, 17.6, 3.0,2.1, 5.4, 0.02, and $1.5nmol\;m^{-2}d^{-1}$ respectively. Among the metals, Cu and Cd showed the most noticeable seasonal patterns. The Cd flux correlated positively with the fluxes of biogenic components while the Cu flux correlated with both the lithogenic and biogenic particle fluxes. The Cu flux peak in the late summer is likely related to a substantial amount of inflow of ice melt water laden with Cu-enriched lithogenic particles. On the other hands, the Cd flux peak in the early spring may be associated with the unusually early occurred phytoplankton bloom.

Taxonomic Study of Suborder Calcaxonia (Alcyonacea: Octocorallia: Anthozoa) from King Sejong Station, Antarctic

  • Song, Jun-Im;Hwang, Sung-Jin;Moon, Hae-Won;An, In-Young
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.2
    • /
    • pp.84-96
    • /
    • 2012
  • Some gorgonians in the families, Primnoidae and Isididae within the suborder Calcaxonia were collected from subtidal zones between depths of 10 and 45 m in the coastal regions of King Sejong Station ($62^{\circ}13'S$, $058^{\circ}47'W$), Korea Polar Research Institute of Korea Ocean Research and Development Institute (KORDI) by SCUBA diving from 2009 to 2011. Three species in the Primnoidae, $Arntzia$ $gracilis$ (Molander, 1929), $Thouarella$ ($Thouarella$) $antarctica$ (Valenciennes, 1846) and $Onogorgia$ $nodosa$ (Molander, 1929), and also one species in the family Isididae, $Tenuisis$ $microspiculata$ (Molander, 1929) are newly recorded to octocorallian fauna in Marian Cove and Potter Cove of King George Island. These four species have been described in detail.

Water Column Properties and Dispersal Pattern of Suspended Particulate Matter (SPM) of Marian Cove during Austral Summer, King George Island, West Antarctica (남극 킹죠지섬 마리안 소반의 하계 수층 특성과 부유물질 분산)

  • Yoo, Kyu-Cheul;Yoon, Ho-Il;Oh, Jae-Kyung;Kim, Yea-Dong;Kang, Cheon-Yun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.266-274
    • /
    • 1999
  • Vertical CTDT measurement at one point near tidewater glacier of fjord-head in Marian Cove, a tributary embayment of Maxwell Bay, South Shetland Islands was performed for 24 hours during the austral summer (January 21-22, 1998) to present water-column properties and SPM (suspended particulate matter) dispersal pattern in subpolar glaciomarine setting. Marian Cove shows three distinct water layers: 1) cold, freshened, and highly turbid surface plume in the upper 2 m, 2) warm, saline, and relatively clean Maxwell Bay water between 15-35 m in water depth, and 3) cold and turbid mid plume between 40-65 m in water depth. The surface plume is composed of silt-sized clastie particles mixed with flocculated biogenic detritus, and appears to originate from either supraglacial discharge by meltwater streams along the coast or water fall of ice cliff. Freshened and turbid mid plume consists exclusively of silt-sized clastic particles, resulting from subglacial discharge beneath the tidewater glacier. The disappearance of the two turbid plumes during the earlier period of measurement seems to be largely due to the breakup of the plumes by upwelling caused by strong easterly wind (> 8 m $sec^{-1}$). Thus, wind coupling over tidal effects regionally plays a major role in dispersal pattern of SPM as well as water exchange in Marian Cove.

  • PDF

Seasonal Variation of Microalgae in the Surface Water of Marian Cove, King George Island, the Antarctic 1998/1999 (1998/1999 남극 킹조지섬 마리안소만 표층수에 서식하는 미세조류의 계절적 변동)

  • 강재신;강성호;이진환;최돈원;이상훈
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.21-31
    • /
    • 2000
  • We investigated seasonal variation of microalgal assemblages, sea water temperature, salinity and suspended solid and the parameters measured daily from January 1998 to October 1999 at a nearshore shallow-water in Marian Cove, Maxwell Bay, King George Island, the Antarctic. Annual mean surface water temperature was -0.3$0^{\circ}C$ and the highest water temperature was 4.53$^{\circ}C$ (22 January 1999) and the lowest water temperature was -2.07$^{\circ}C$ (23 August 1998). Annual mean salinity was 33.38 psu, ranging from 42.80 psu (6 January 1999) to 19.50 psu (6 June 1999). Annual mean suspended solid (SS) during two years was 34.14 mgㆍ1$^{-1}$, ranging from 60.62 mgㆍ1$^{-1}$(7 March 1998) to 12.90 mgㆍ1$^{-1}$ (26 December 1998). Chlorophyll $\alpha$ (Chl $\alpha$) concentrations were measured in order to know seasonal variations of microalgae in the surface seawater. Annual mean of total Chl a concentration was 0.55$\mu\textrm{g}$ㆍ1$^{-1}$, the highest Chl $\alpha$ concentration (12.16$\mu\textrm{g}$ㆍ1$^{-1}$) appeared in 4 October 1998, the lowest Chl $\alpha$ concentration appeared 0.19$\mu\textrm{g}$ㆍ1$^{-1}$, Monthly mean total Chl $\alpha$ concentration was high in October 1998 (1.32$\mu\textrm{g}$ㆍ1$^{-1}$) and low in July on 1998 (0.28$\mu\textrm{g}$ㆍ1$^{-1}$). Annual mean nano-sized Chl $\alpha$ concentration was 0.40$\mu\textrm{g}$ㆍ1$^{-1}$, monthly mean nano -sized Chl $\alpha$ concentration was high in November 1998 (0.90$\mu\textrm{g}$ㆍ1$^{-1}$), and low in July 1999 (0.22$\mu\textrm{g}$ㆍ1$^{-1}$). Annual mean micro-sized Chl $\alpha$ concentration was 0.15$\mu\textrm{g}$ㆍ1$^{-1}$ monthly mean micro-sized Chl $\alpha$ concentration was high in October 1998 (0.81$\mu\textrm{g}$ㆍ1$^{-1}$), and low July 1998, January, February and September 1999 (0.05$\mu\textrm{g}$ㆍ1$^{-1}$). More than 65% of total Chl $\alpha$ was concentrated during spring and summer time between October and March. Microalgal variation appeared to be due to physical factors of seawater in the Antarctic nearshore from 1998 to 1999. The reason why micro-sized Chl $\alpha$ did not increase during austral summer was the bay had been frozen by decrease of water temperature. We think that total microalgal abundance was decreased because the summer microalgal abundance was determined by variation of water temperature during winter season. [Chl $\alpha$ concentration, Microalgal assembalges, Seasonal variation, the Antarctic nearshore].

  • PDF