Study on the Community Structure of Meiofauna in Marian Cove, King George Island, Antarctica

남극 King George Islands, Marian Cove의 중형저서생물 군집 구조에 관한 연구

  • 방현우 (한양대학교 생명과학과) ;
  • 강성호 (한국해양연구원 부설 극지연구소) ;
  • 이원철 (한양대학교 생명과학과)
  • Published : 2005.06.01

Abstract

The community structure, vertical distribution and harpacticoids composition of the meiofauna community were observed from five stations in Marian Cove, King George Island and one station on the northeastern side of Nelson Island. Sample was taken by a free-fall corer in December 2002. Generally, 11 taxa of meiofauna were found, and meiofauna abundance ranged from 322 to 1575 indiv. $10cm^{-2}$ (mean 781 indiv. $10cm^{-2}$). Nematodes were the most dominant group, making up $89\%$ of total meiofauna, followed by harpacticoids $(6.8\%)$. Benthic harpacticoids appeared 19 species of nine families at all the stations, and most various taxa appeared at station B (13 species of seven families). For vertical distribution, more than $70\%$ of meiofauna was concentrated in the upper $0\~2cm$ sediment layers, and the density abruptly decreased with depth in all the stations. Total biomass of meiofauna varied between 41 and $360{\mu}gC\;10cm^{-2}$, and overall mean biomass was $205{\mu}gC\;10cm^{-2}$. Also nematodes had the highest percentage of total maiofauna biomass $(62.4\%)$. The analysis results of Canonical Correspondence Analysis between meiofauna community and sediment grain size showed that polychaets, oligochaets and cumaceans were influenced by silt&cray, and sand, granule and pebble had a influence on harpacticoids, kinorhynchs and ostracods respectively. But nematodes were not affected by sediment grain size.

남극 King George Island, Marian Cove에 서식하는 중형저서생물 군집구조, 수직분포 그리고 요각류 군집을 조사하기 위해 2002년 12월 Marian Cove내 5개 정점과 Nelson Island북동쪽연안 1개 정점에서 자유 낙하 중력 시추기를 이용하여 채집을 실시하였다. 조사기간 중 중형저서생물은 11개 분류군이 발견되었으며, 출현한 중형 저서생물의 총 개체수는 $322\~1515 indiv.\;10cm^{-2}$범위로 평균 781indiv. $10cm^{-2}$로 나타났다. 선충류의 평균 개체수는 693indiv. $10cm^{-2}$로 전체 중형저서생물의 $88.7\%$를 차지하는 우점 분류군으로 나타났으며, 저서성 요각류가 53 indiv. $10cm^{-2}$$6.8\%$를 차지하며 그 뒤를 이어 우점하는 분류군으로 나타났다. 퇴적물 깊이에 따른 중 형저서생물의 수직분포를 보면 $70\%$ 이상의 개체가 표층 $0\~2cm$에 집중되어 나타났으며, 깊이 5cm 이하에서는 $5\%$이하의 낮은 분포를 보였다. 각 정점별 평균 총 생물량은 $41\~360{\mu}gC\;10cm^{-2}$범위로 평균 $205{\mu}gC\;10^{-2}$로 나타났으며, 가장 높은 비율을 차지하는 분류군 역시 선충류로 전체 생물량의 $62.4\%$를 차지했다. SPSS를 이용한 상관계수 분석 결과 온도가 중형저서생물 군집에 영향을 미치는 것으로 나타났으며, 염분도와 유기 물 총량은 중형저서생물 군집에 별다른 영향을 끼치지 못하는 것으로 나타났다. CCA를 이용한 퇴적물 입자와 각 분류군과의 상관관계 분석 결과 다모류, 빈모류 그리고 쿠마류는 실트 및 점토와 높은 상관관계를 가지며, 요각류와 부등각류, 이매패류는 모래, 유공충류는 잔자갈 그리고 동문동물류와 패충류는 중자갈과 높은 상관관계를 갖는 것으로 조사되었고, 선충류의 경우 각 입자와 상관관계가 매우 낮게 나타났다. 환경오염을 모니터링 하는데 가장 유용한 분류군인 요각류는 모두 9개과 19개 속 19개종이 출현했으며, 가장 다양한 분류군이 나타난 정점 B에서 7개과 13개 속 13개종이 출현하였다.

Keywords

References

  1. Bouvy M and J Soyer. 1989. Benthic Seasonality in an intertidal mud flat at Kerguelen Islands (Austral Ocean). The relationships between meiofaunal abundance and their potential microbial food. Polar BioI. 10:19- 27
  2. Burgess R. 2001. An improved protocol for separating meiofauna from sediments using colloidal silica sols. Mar. Ecol. Prog. Ser. 214:161-165 https://doi.org/10.3354/meps214161
  3. Chen GT, RL Herman and M Vincx, 1999. Meiofauna communities from the Straits of Magellan and the Beagle Channel. Sci. Mar. 63:123-132
  4. Coull BC. 1973. Meiobenthic Harpacticoida (Crustacea, Copepoda) from the deep sea off North Carolina IV. The families Cletodidae T. Scott and Ancorabolidae Sars. Trans. Amer. Micros. Soc. 92:604-620 https://doi.org/10.2307/3225271
  5. Coull BC, GRF Hicks and JBJ Wells. 1981. Nematode/copepod ratio for monitoring pollution: A rebuttal. Mar. Pollut. Bull. 12:378-381 https://doi.org/10.1016/0025-326X(81)90408-2
  6. Coull BC. 1985. Long-term variability of esturine meiobenthos: an 11 year study. Mar. Ecol. Prog. Ser. 24:205-218 https://doi.org/10.3354/meps024205
  7. Coull BC. 1999. Role of meiofauna in estuarine soft-bottom habitats. Austr. J. Ecol. 24:327 - 343 https://doi.org/10.1046/j.1442-9993.1999.00979.x
  8. Danovaro R, A Pusceddu, S Mirto and M Fabiano. 1999. Meiofauna assemblages associated with scallop beds (Adamussium colbeki) in the coastal sediments of Terra Nova Bay (Ross Sea, Antarctica). Antarct. Sci. 11:415-418
  9. Fabiano M and R Danovaro. 1999. Meiofauna distribution and mesoscale variability in two sites of the Ross Sea (Antarctica) with contrasting food supply. Polar BioI. 22:115-123 https://doi.org/10.1007/s003000050398
  10. Giere O. 1993. Meiobenthology, the microscopic fauna in aquatic sediment. Springer- Verlag
  11. Guidi-Guilvard LD and R Buscail. 1995. Seasonal survey of metazoan meiofauna and surface sediment organics in a non-tidal turbulent sublittoral prodelta (northwestern Mediterranean). Cont. Shelf Res. 15:633-653 https://doi.org/10.1016/0278-4343(94)E0036-L
  12. Heip C, M Vincx and G Vranken. 1985. The ecology of marine nematode. Oceanogr. Mar. BioI. Annu. Rev. 23:399-489
  13. Herman RL and HU Dahms. 1992. Meiofauna communities along a depth transect off Halley Bay (Weddell Sea-Antarctica). Polar BioI. 12:313-320
  14. Hicks GRF and BC Coull. 1983. The ecology of marine meiobethic harpacticoid copepods. Oceanogr. Mar. BioI. Ann. Rev. 21:67-175
  15. Higgins RP and H Thiel. 1988. Introduction to the Study of Meiofauna. Smithsonian Institution Press
  16. Huys R, JM Gee, CG Moore and R Hamond. 1996. Marine and brackish water harpacticoid copepods. part 1. Synopses of the British Fauna (New Series). 1-352
  17. Kang SH, JS Kang, KH Chung, MY Lee, BY Lee, H Chung, Y Kim and DY Kim. 1997. Seasonal variation of nearshore Antarctic microalgae and environmental factors in Marian Cove, King George Island, 1996. Korean J. Polar Res. 8:9-27
  18. Kim DS, JW Choi and JG Je. 1998. Community structure of meiobenthos for monitoring pollution in mariculture farms in Tongyung coastal area, Southern Korea. J. Kor. Fish. Soc. 31:217-225
  19. Lang K. 1965. Copepoda harpacticoidea from the californian pacific coast. K. svenska vetensk. Akad. Handl. 10:1-566
  20. Lee HJ, D Gerdes, S Vanhove and M Vincx. 2001. Meiofauna response to iceberg disturbance on the Antarctic continental shelf at Kapp Norvegia (Weddell Sea). Polar BioI. 24:926-933 https://doi.org/10.1007/s003000100301
  21. Lee Wand R Huys. 1999. New Tachidiella (Copepoda: Harpacticoida: Tisbidae) from the Antarctic and Norway including a review of the genus. Zoosystema 21:419-444
  22. Lee W, SH Kang, PA Montagna and IS Kwak. 2003. Temporal dynamics and patterning of meiofauna community by self-organizing artificial neural networks. Ocean Polar Res. 25:237-247 https://doi.org/10.4217/OPR.2003.25.3.237
  23. Mare MF. 1942. A study of a marine benthic community with special reference to the micro-organism. J. Mar. BioI. Ass. UK. 25:517-554 https://doi.org/10.1017/S0025315400055132
  24. Miller DC, RJ Geider and HL MacIntyre. 1996. Microphytobenthos: the ecological role of the 'secret garden' of un vegetated, shallow-water marine habitats. II. Role in sediment stability and shallow-water food webs. Estuaries 19:202-212 https://doi.org/10.2307/1352225
  25. Quinn GP and MJ Keough. 2002. Canonical Correspondence Analysis. Experimental design and data analysis for biologists. Cambridge University press. pp.467-469
  26. Raffaelli DG and CF Mason. 1981. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar. Pollut. Bull. 12:158-163 https://doi.org/10.1016/0025-326X(81)90227-7
  27. Schratzberger M, T A Dinmore and S Jennings. 2002. Impacts of trawling on the diversity, biomass and structure of meiofauna assemblages. Mar. BioI. 140:83-93 https://doi.org/10.1007/s002270100688
  28. Sherman KM and BC Coull. 1980. The response of meiofauna to sediment disturbance. J. Exp. Mar. BioI. Ecol. 46:59-71 https://doi.org/10.1016/0022-0981(80)90091-X
  29. Sibert JR. 1979. Detritus and juvenile salmon production in Nanaimo Estuary: II. Meiofauna available as food to juvenile chum salmon (Oncorhynchus keta). J. Fish. Res. Board Can. 36:497-503 https://doi.org/10.1139/f79-073
  30. Skowronski RSP, TN Corbisier and FR Robles. 1998. Meiofauna along a coastal transect in Admiralty Bay, King George Island (Antarctica). Pesqui. Antart, Bras. 3:117-131
  31. Skowronski RSP and TN Corbisier. 2002. Meiofauna distribution in Martel Inlet King George Island (Antarctica): sediment features versus food availability. Polar BioI. 25:126-134
  32. Smith LD and BC Coull. 1987. Juvenile spot (Pisces)and grass shrimp predation on meiobenthos in muddy and sandy substrata. J. Exp. Mar. BioI. Ecol. 105:123-136 https://doi.org/10.1016/0022-0981(87)90167-5
  33. Snelgrove PVR and CA Butman. 1994. Animal-sediment relationships revisited: cause versus effect. Oceanogr. Mar. BioI. Annu. Rev. 32:111-177
  34. Somerfield PJ, HL Rees and RM Warwick. 1995. Interrelationships in community structure between shallow-water marine meiofauna and macrofauna in relation to dredgings disposal. Mar. Ecol. Prog. Ser. 127:103-112 https://doi.org/10.3354/meps127103
  35. Vanhove S, J Wittoeck, G Desmet, B Van den Berghe, RL Herman, RPM Bak, G Nieuwland, JH Vosjan, A Boldrin, S Rabitti and M Vincx, 1995. Deep-sea meiofauna communities in Antarctica: structural analysis and relation with the environment. Mar. Ecol. Prog. Ser. 127:65-76 https://doi.org/10.3354/meps127065
  36. Vanhove S, HJ Lee, M Beghyn, D Van Gansbeke, S Brockington and M Vincx. 1998. The metazoan meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J. Mar. BioI. Assoc. UK 78:411-434 https://doi.org/10.1017/S0025315400041539
  37. Vanhove S, W Arntz and M Vincx. 1999. Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica). Mar. Ecol. Prog. Ser. 181:237-256 https://doi.org/10.3354/meps181237
  38. Vanhove S, M Beghyn, D Van Gansbeke, LW Bullough and M Vincx M, 2000. The seasonal varying biotope of Signy Island: implications for meiofaunal structure. Mar. Ecol. Prog. Ser. 202:13-25 https://doi.org/10.3354/meps202013
  39. Warwick RM. 1981. The nematode/copepod ratio and its use in pollution ecology. Mar. Pollut. Bull. 12:329-333 https://doi.org/10.1016/0025-326X(81)90105-3
  40. Webb DG and PA Montagna. 1993. Initial burial and subsequent degradation of sedimented phytoplankton: relative impact of macrobenthos and meiobenthos. J. Exp. Mar. BioI. Ecol. 166:151-164 https://doi.org/10.1016/0022-0981(93)90215-A