• Title/Summary/Keyword: Margin of Safety

Search Result 499, Processing Time 0.03 seconds

Vanadate-induced Platelet Aggregation and Inhibition Effect of Vanadium Yeast (Vanadate의 혈소판 응집작용과 Vanadium Yeast의 억제효과)

  • 박승희;오승민;박영현;정규혁
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.441-447
    • /
    • 2002
  • It has been well known that vanadium shows various physiological and pharmacological properties such as an insulin-mimetic effect. In view of the reported toxic effects there is the problems that the safety margin is narrow because of its strong toxicity, Vanadate was tested for its ability to cause blood aggregation. Although vanadate or $H_2O$$_2$ alone had little effect on platelet aggregation, treatment of vanadate and $H_2O$$_2$ together induced platelet aggregation indicated that it was occurred by pervandate or hydroxyl radical produced from the reaction of vanadate and $H_2O$$_2$. It was dependent on extracellular $Ca^{2+}$ion. Platelet aggregation caused by vanadate and $H_2O$$_2$ was inhibited by ascorbic acid, tocopherol, catalase, mannitol, and Tiron. In contrast to vanadate, vanadium yeast prepared by uptaking vanadate in yeast cells did not induce platelet aggregation in the presence of $H_2O$$_2$.>.

A Concentration-Function Basis for Ideal Vitamin C Intake

  • Kwon, Oran;Levine, Mark
    • Nutritional Sciences
    • /
    • v.5 no.4
    • /
    • pp.211-220
    • /
    • 2002
  • Vitamin C is an essential nutrient involved in many functions. Humans are unable to synthesize vitamin C de novo, because they lack the last enzyme in the biosynthetic pathway. Previous Recommended Dietary Allowances (RDAs) for vitamin C were based on prevention of deficiency with a margin of safety. However preventing deficiency may not be equivalent to ideal nutrient intake. Recommendation should be based on vitamin function in relation to concentration. For this goal, data set of the relationship between wide-range of vitamin C dose and resulting concentrations in plasma and tissues and characterization of functional outcomes in relation to these concentrations should be acquired. This article reviews the current knowledge in these areas and suggest how this knowledge may contribute toward establishing dietary guideline for ideal vitamin C intake.

Response Instrumentation Test Acceptance Criteria for APR1400 RVI CVAP (APR1400 원자로내부구조물 종합진동평가 응답측정시험 허용기준)

  • Ko, Do-Young;Kim, Kyu-Hyung;Kim, Sung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1036-1042
    • /
    • 2011
  • APR1400 RVI CVAP using the non-prototype category II is being conducted to verify integrity of the RVI design and to secure the CVAP technology. The measurement programs are to confirm vibration analysis results for reactor internals during pre-operational and initial startup testing and to determine the safety margin. One of the important basis for the measurement programs is test acceptance criteria. Therefore, this paper is on establishment of response instrumentation test acceptance criteria for APR1400 RVI CVAP. The established acceptance criteria show that the stress criteria of APR1400 RVI are more conservative values than those of the valid prototype plant(Palo Verde unit 1) and, the displacement criteria of the inner barrel assembly and the upper guide structure were established to 0.03 in and 0.01 in, respectively.

Structural Vibration Analysis of Smart UAV 4-Degree of Freedom Ground Test System (스마트 무인기 4자유도 지상시험치구 구조진동해석)

  • Park, Kang-Kyun;Choi, Hyun-Chul;Kim, Dong-Man;Kim, Dong-Hyun;Ahn, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.593-598
    • /
    • 2009
  • In this study we present results for the design of ground test system for 4 degree of freedom(DOF) control test is one of the smart UAV ground test. This system is equipped with real smart UAV and Z direction DOF and 3 direction rotation DOF, Ensuring safe operation of the Smart UAV is a top priority. To this end, it is required to do structure analysis and test verification to confirm the design margin and safety. Based on the analysis, the ground test system has been redesigned to meet the structural conditions.

  • PDF

Prediction of Shear Strength in High-Strength Concrete Beams Considering Size Effect (크기효과를 고려한 고강도 콘크리트 보의 전단강도 예측식 제안)

  • 배영훈;윤영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.878-883
    • /
    • 2003
  • To modify some problems of ACI shear provisions, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear function in deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, namely d, , ρ, f/sub c/' and aid, about 250 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim & Park's equation and Zsutty's equation. While proposed shear equation is simpler than other shear equations, it is shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practice shear design.

  • PDF

STUDY OF RELIABILITY BASED FLEXIBLE WING SHAPE DESIGN OPTIMIZATION (신뢰성을 고려한 유연 날개 형상 최적 설계에 대한 연구)

  • Kim S.W.;Kwon J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.21-28
    • /
    • 2006
  • Reliability Based Design Optimization(RBDO) is one of the optimization methods that minimize the product failure due to small changes of operating conditions or process errors. It searches the optimum that satisfies the safety margin of each constraint, and it gives stable and reliable designs. However, RBDO requires many times oj computational efforts compared with the conventional deterministic optimization(DO) to evaluate the probability of failure about each constraint, therefore it is hard to apply directly to large-scaled problems such as a flexible wing shape design optimization. For the efficient reliability analysis, the approximate reliability analysis method with the two-point approximation(TPA) is proposed In this study, the lift-to-drag ratio maximization designs are performed with 3-dimensional Navier-Stokes analysis and NASTRAN structural analysis, and the optimization results about the deterministic, FORM and SORM are compared.

Proposal of CPC Function Improvement

  • Lee, Byung-Il;Kim, Jong-Jin;Baek, Seung-Su;Kim, Hee-Cheol;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.562-567
    • /
    • 1995
  • The concept of VLDT (Variable Low DNBR Trip), a new CPC trip function, was proposed and applied to the events of increase in secondary heat removal, such as an excess feedwater event anti an IOSGADV (Inadvertent Opening S/G Atmospheric Dump Valve). Major assumption used in this study was no time delay to LOOP (Loss of Offsite Power) after turbine trip. In case of using this VLDT function, safety criterion of DNB would not be violated under the same condition as previous analysis without any change in thermal margin.

  • PDF

Effect of Weld Residual Stress on Fatigue Analysis of Nozzle (노즐의 피로해석에 미치는 용접잔류응력의 영향)

  • Kim, Sang-Chul;Kim, Man-Won
    • Journal of Welding and Joining
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • Although the fatigue design curve of ASME Code has enough margin with respect to alternating stress and cycles, the welding residual stress(WRS) should be included in fatigue analysis. In this paper, WRS distribution in a nozzle with dissimilar metal weldment was obtained by finite element analysis and was added in fatigue analysis. The fatigue analysis was performed by following the ASME Code including thermal and stress analysis applying with postulated 30 transient conditions. The calculated results of a cumulative fatigue usage factors(CUF) were compared for the case of the models with or without WRS effects. The results showed that the CUF at weldment and heat affected zone was affected by the WRS.

Seismic Fragility Analysis of Deteriorated Reinforced Concrete Beams in Nuclear Power Plants (열화를 고려한 원자력발전소 철근콘크리트 보의 지진 취약도 해석)

  • Lee, Myung-Kue;Kim, Moon-Soo;Chung, Yun-Suk;Kim, In-Soo;Koh, Sung-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.235-238
    • /
    • 2005
  • The seismic fragility analyses of reinforced concrete propelled beam are performed to evaluate safety margin. The models were simulated by Latin Hyper-Cube (LHC) method considering various aging-related deterioration of RC beam. Fragility curves under various condition subjected to static load are compared. It is found that the 20$\%$ loss of top and bottom steel 15$\%$ lower than the undegraded beam in the ultimate strength. Seismic fragility analyses were performed to find out the effect of aging-related deterioration on the dynamic behaviour of RC beam.

  • PDF

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database (적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.