• Title/Summary/Keyword: Margin generating algorithm

Search Result 5, Processing Time 0.017 seconds

Generating Unit Maintenance Scheduling Considering Regional Reserve Constraints and Transfer Capability Using Hybrid PSO Algorithm (지역별 예비력 제약과 융통전력을 고려한 발전기 예방정비 계획 해법)

  • Park, Young-Soo;Park, June-Ho;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1892-1902
    • /
    • 2007
  • This paper presents a new generating unit maintenance scheduling algorithm considering regional reserve margin and transfer capability. Existing researches focused on reliability of the overall power systems have some problems that adequate reliability criteria cannot be guaranteed in supply shortage regions. Therefore specific constraints which can treat regional reserve ratio have to be added to conventional approaches. The objective function considered in this paper is the variance (second-order momentum) of operating reserve margin to levelize reliability during a planning horizon. This paper focuses on significances of considering regional reliability criteria and an advanced hybrid optimization method based on PSO algorithm. The proposed method has been applied to IEEE reliability test system(1996) with 32-generators and a real-world large scale power system with 291 generators. The results are compared with those of the classical central maintenance scheduling approaches and conventional PSO algorithm to verify the effectiveness of the algorithm proposed in this paper.

An Application of a Binary PSO Algorithm to the Generator Maintenance Scheduling Problem (이진 PSO 알고리즘의 발전기 보수계획문제 적용)

  • Park, Young-Soo;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1382-1389
    • /
    • 2007
  • This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.

Design and Implementation of Intelligent Agent based Margin Push Multi-agent System for Internet Auction (인터넷 경매를 위한 지능형 에이전트 기반 마진 푸쉬 멀티에이전트 시스템 설계 및 구현)

  • Lee, Geun-Wang;Kim, Jeong-Jae;Lee, Jong-Hui;O, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.167-172
    • /
    • 2002
  • Recently, some of people are keep in research and development of the further more efficient and convenient auction systems using intelligent software agents in electronic commerce. The purpose of this thesis is that a simple auction system has web bulletin boards, is aided by intelligent agent, and generates pertinent auction duration time and starting price for auction goods of auctioneer into a auction system, then the auctioneer gets the highest margin. The seller who want to sell goods, is using internet sends mail that has information for goods to agent of internet auction system. The agent undertake filtering process for already learned information about similar goods. And it calculate duration time and start price from stored bidding history database. In this thesis we propose a mailing agent system pushing information in internet auction that enables to aid decision for auctioneer about the starting time and price which delivers the highest margin.

A Study on Performance Improvement of Non-Profiling Based Power Analysis Attack against CRYSTALS-Dilithium (CRYSTALS-Dilithium 대상 비프로파일링 기반 전력 분석 공격 성능 개선 연구)

  • Sechang Jang;Minjong Lee;Hyoju Kang;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • The National Institute of Standards and Technology (NIST), which is working on the Post-Quantum Cryptography (PQC) standardization project, announced four algorithms that have been finalized for standardization. In this paper, we demonstrate through experiments that private keys can be exposed by Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) attacks on polynomial coefficient-wise multiplication algorithms that operate in the process of generating signatures using CRYSTALS-Dilithium algorithm. As a result of the experiment on ARM-Cortex-M4, we succeeded in recovering the private key coefficient using CPA or DDLA attacks. In particular, when StandardScaler preprocessing and continuous wavelet transform applied power traces were used in the DDLA attack, the minimum number of power traces required for attacks is reduced and the Normalized Maximum Margines (NMM) value increased by about 3 times. Conseqently, the proposed methods significantly improves the attack performance.

The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM (다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형)

  • Park, Ji-Young;Hong, Tae-Ho
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.