• Title/Summary/Keyword: Marangoni flow

Search Result 27, Processing Time 0.023 seconds

A Droplet-Manipulation Method using Opto-thermal Flows on Amorphous Silicon Thin Film (비결정질 실리콘 박막 상에서의 광열 유동을 이용한 액적 조작)

  • Lee, Horim;Yoon, Jin Sung;Kim, Dong Sung;Lim, Geunbae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • We present a droplet-manipulation method using opto-thermal flows in oils. The flows are originated from Marangoni and buoyancy effects due to temperature gradient, generated by the adsorption of light on an amorphous silicon thin film. Using this method, we can transport, merge and mix droplets in an extremely simple system. Since the temperature rise during the operation is small, this method can be used for biological applications without the damage on cell viability.

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

Effect of axial rotation on oscillatory thermocapillary flow in half-zone of high Prandtl number fluid (높은 Prandtl 수 유체에서 축회전이 열모세관 유동의 진동에 미치는 영향)

  • Jeon, Seung-Won;Lee, Kyu-Jung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2248-2253
    • /
    • 2008
  • A numerical study on oscillatory thermocapillary flow in half-zone has performed to understand the effect of axial rotation. 2d unsteady code is developed to observe the onset of oscillation. 2cs Silicone oil with Prandtl number of 26.5 is used as a working fluid. The critical temperature difference at onset of oscillation is investigated under the different aspect ratios and rotation modes. It is shown that the onset of oscillation is delayed when aspect ratio reduces and rotating speed increases. The oscillatory flow is strongly reduced under top rotation and co-rotation modes, while it is augmented under bottom rotation and counter-rotation modes. It is thought that interaction between return flow and bottom wall is important to explain the oscillatory flow.

  • PDF

Effect of buoyancy and thermocapillarity on the melt motion and mass transfer for different aspect ratio of flow field in magnetic Czochralski crystal growth of silicon (Cusp 자장이 걸려있는 초크랄스키 실리콘 단결정성장에서 유동장의 종횡비에 따라 부력과 열모세관 현상이 용융물질의 유동과 물질전달에 미치는 영향)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The effect of the buyancy and thermocapillarity for differnent aspect ratio of flow field on melt motion and mass transfer has been numerically investigated in magnetic Czochralski crystal growth of silicon. During the process of crystal growth, the melt depth of crucible reduces so the aspect ratio of flow field also reduces. Therefore the shape of magnetic field of the flow field changes and the flow pattern also changes significantly. Together with the melt flow which forms the Marangoni convection (or thermocapillary flow) that comes from the inside the flow field, a flow circulation is observed near the corner close both to the crucible wall and the free surface. Due to this circulation, buoyancy effect has been turned out to be local rather than global. As the aspect ratio decreases, the radial component of the magnetic field prevails compared with the axial component in the flow field. Under the influence of this magnetic field, the melt flow and the temperature distribution in a meridional plane tend to depend on the radial position. As the aspect ratio decreases, the temperature gradient near the edge of the crystal decreases yielding smaller thermocapillarity, and the oxygen concentration near the crystal and the oxygen incorporation rate also decrease.

  • PDF

A Theoretical Model of Critical Heat Flux in Flow Boiling at Low Qualities

  • Kim, Ho-Young;Kwon, Hyuk-Sung;Hwang, Dae-Hyun;Kim, Yongchan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.921-930
    • /
    • 2001
  • A new theoretical critical heat flux (CHF) model was developed for the forced convective flow boiling at high pressure, high mass velocity, and low quality. The present model for an intermittent vapor blanket was basically derived from the sublayer dryout theory without including any empirical constant. The vapor blanket velocity was estimated by an axial force balance, and the thickness of vapor blanket was determined by a radial force balance for the Marangoni force and lift force. Based on the comparison of the predicted CHF with the experimental data taken from previous studies, the present CHF model showed satisfactory results with reasonable accuracy.

  • PDF

Analysis of Keyhole Formation and Stability in Laser Spot Welding (레이저 점 용접의 키홀 발생과 안정성에 대한 해석)

  • 고성훈;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • v.20 no.4
    • /
    • pp.484-490
    • /
    • 2002
  • The formation and stability of stationary laser weld keyholes were investigated using a numerical simulation. The effect of multiple reflections in the keyhole was estimated using the ray tracing method, and the free surface profile, flow velocity and temperature distribution were calculated numerically. In the simulation, the keyhole was formed by the displacement of the melt induced by evaporation recoil pressure, while surface tension and hydrostatic pressure opposed cavity formation. A transition mode having the geometry of the conduction mode with keyhole formation occurred between the conduction and keyhole modes. At laser powers of 500W and greater, the protrusion occurred on the keyhole wall, which resulted in keyhole collapse and void formation at the bottom. Initiation of the protrusion was caused mainly by collision of upward and downward flows due to the pressure components, and Marangoni flow had minor effects on the flow patterns and keyhole stability.bility.

A NUMERICAL ANALYSIS OF CZOCHRALSKI SINGLE CRYSTAL GROWTH OF SILICON WITH MISALIGNED CUSP MAGNETIC FIELDS (Misaligned된 비균일자장이 인가된 초크랄스키 실리콘 단결정성장에 대한 수치적 해석)

  • Kim, Chang Nyung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.121-131
    • /
    • 2000
  • Melt flow, heat and mass transfer of oxygen have been analyzed numerically in the process of Czochralski single crystal growth of silicon under the influence of misaligned cusp magnetic fields. Since the silicon melt in a crucible for crystal growth is of high temperature and of highly electrical-conducting, experimentation method has difficulty in analyzing the behavior of the melt flow. A set of simultaneous nonlinear equations including Navier-Stokes and Maxwell equations has been used for the modelling of the melt flow which can be regarded as a liquid metal. Together with the melt flow which forms the Marangoni convection, a flow circulation is observed near the comer close both to the crucible wall and the free surface. The melt flow tends to follow the magnetic lines instead of traversing the lines. These flow characteristics helps the flow circulation exist. Mass transfer characteristics influenced by the melt flow has been analyzed and the oxygen absorption rate to the crystal has been calculated and turned out to be rather uniform than in the case of an aligned magnetic field.

  • PDF

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

Visualization of Vortex-induced Mixing at the Liquid-liquid-gas 3-phase Contact Line (액체-액체-기체 3상 접촉선에서의 와류에 의한 혼합 가시화)

  • Kim, Tae-Hong;Kim, Hyoungsoo;Kim, Seungho;Kim, Ho-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.3
    • /
    • pp.21-24
    • /
    • 2012
  • Although the motion of the three-phase contact line on a solid substrate has been extensively studied thus far, the understanding of the dynamics of the contact line of liquid/liquid/gas phases is far from complete. Here we deposit a drop of isopropyl alcohol (IPA) on water and HFE-7100 whose free surfaces are exposed to air to observe the flow field around the contact line. By combining the shadowgraph and high-speed imaging techniques, we find that vortices are spontaneously generated at the contact line, which grow in size with time. The flow is attributed to the Marangoni stress that pulls a liquid of lower-surface tension toward a liquid surface having a higher surface tension. However, it is not still clear why the entrained lower-surface-tension liquid should whirl rapidly beneath the contact line. We also visualize the flow by the particle image velocimetry (PIV) to find out that the rotational velocity reaches the order of 1 mm/s near the free surface.