최근 지형렌더링에서 사용되는 DEM(digital elevation map) 데이터들은 일반 컴퓨터에서 처리 가능한 메모리 용량을 초과하기 때문에 밉맵(mipmap)을 이용한 상세단계(LOD : level-of-detail) 기법들을 사용하는 외부 메모리 처리(out-of-core) 기법들이 많이 연구되고 있다. 하지만 밉맵을 이용한 상세단계 기법들은 높은 레벨의 상세단계에서 데이터의 간략화에 따른 기하오차가 발생한다. 이러한 기하오차는 시점이 이동할 때 상세단계가 변화하는 부분에서 기하파핑(geometry popping) 현상을 유발한다. 본 논문에선 기하오차를 줄이기 위해 정점 응집맵을 제안한다. 전처리 단계에서 생성되는 정점 응집맵은 벡터를 저장한 텍스쳐이다. 이 벡터들은 상대적으로 기울기 변화량이 큰 위치로 주변의 정점들을 응집시켜 지형의 기하오차를 줄이기 때문에 단순히 밉맵을 이용하여 지형을 렌더링 했을 때 나타나는 기하파핑 현상을 효과적으로 줄일 수 있다.
This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.
본 논문은 사실적인 3D 얼굴 모델링과 얼굴 표정 생성 시스템을 제안한다. 사실적인 3D 얼굴 모델링 기법에서 개별적인 3D 얼굴 모양과 텍스쳐 맵을 만들기 위해 Generic Model Fitting 기법을 적용하였다. Generic Model Fitting에서 Deformation Function을 계산하기 위해 개별적인 얼굴과 Generic Model 사이의 대응점을 결정하였다. 그 후, Calibrated Stereo Camera로부터 캡쳐 된 영상들로부터 특징점을 3D로 복원하였다. 텍스쳐 매핑을 위해 Fitted된 Generic Model을 영상으로 Projection하였고 사전에 정의된 Triangle Mesh에서 텍스쳐를 Generic Model에 매핑 하였다. 잘못된 텍스쳐 매핑을 방지하기 위해, Modified Interpolation Function을 사용한 간단한 방법을 제안하였다. 3D 얼굴 표정을 생성하기 위해 Vector Muscle기반 알고리즘을 사용하고, 보다 사실적인 표정 생성을 위해 Deformation 과 vector muscle 기반의 턱 rotation을 적용하였다.
본 논문은 양방향 가중치를 이용하는 기존의 업샘플링 방법들에서 나타난 색상 텍스쳐 복사(color texture copy) 문제를 방지하기 위해 선택적 양방향 가중치와 라플라시안 함수를 이용한 색상 가중치를 제안한다. 제안하는 알고리즘은 먼저 3차 회선 보간법(bicubic interpolation)을 통해 높은 해상도의 깊이영상을 생성한다. 그 후 색상영상과 깊이영상의 주변 화소값 차이를 이용하여 색상 텍스쳐 영역을 추정한다. 만일 보간 된 화소가 색상 텍스쳐 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 거리정보와 깊이정보의 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 반면에 색상 텍스쳐 영역에 포함되지 않는 화소는 깊이정보 가중치 대신 색상정보 가중치를 구하여 비용계산을 수행한다. 아홉 개의 화소에 대한 비용계산이 끝나면 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
본 논문은 Time-of-Flight(ToF) 깊이 카메라와 DSLR을 이용한 사진측량 기반의 복합형 카메라시스템 구성방법을 제안한다. ToF 깊이 카메라는 깊이 정보를 실시간으로 출력하는 장점이 있지만 제공되는 명암 영상의 해상도가 낮고 획득한 깊이 정보가 물체의 표면상태에 민감하여 잡음이 발생하는 단점이 있다. 따라서 깊이 카메라를 이용한 입체 모델 생성을 위해선 깊이 정보의 보정과 함께 고해상도 텍스처맵을 제공하는 복합형 카메라의 구성이 필요하다. 이를 위해 본 논문은 상대표정을 수행하여 깊이 카메라와 DSLR의 상대적인 기하관계를 추정하고 공선조건식 기반의 역투영식을 이용하여 텍스처매핑을 수행한다. 성능검증을 위해 기존 기법의 모델 정확도와 텍스처매핑 정확도를 비교 분석한다. 실험결과는 제안 기법의 모델 정확도가 더 높았는데 이는 기존 기법이 깊이 카메라의 잡음이 있는 3차원 정보를 기준점으로 사용하여 절대표정을 수행한 반면에 제안 기법은 오차정보가 없는 두 영상간의 공액점을 이용했기 때문이다.
본 논문에서는 빛이 옷감 내부에서 산란되어 나타나는 패턴을 측정하고 이를 이용해 옷감을 표현하는 새로운 형태의 렌더링 방법을 제안한다. 지금까지는 BTF(Bidirectional Texture Function)가 옷감과 같은 구조를 표현할 수 있는 최적의 방법으로 생각되어져 왔다. 하지만 BTF에 의한 재질 복원은 그 품질이 측정된 데이터의 양에 비례하고, 측정된 데이터를 각종 빛의 현상이 통합된 상태로 사용해야 한다는 단점을 지닌다. 우리는 옷감 구조 내에서의 빛의 산란현상이 옷감의 색감을 드러내는데 중요한 역할을 하고 있음을 확인하였다. 이러한 사실을 이용하여 어떤 지점에 입사된 단위광선이 옷감 내부의 메소구조와 섬유를 통과하면서 외부로 나타나는 산란패턴(산란이미지:Scatter Image)을 샘플의 충분히 많은 지점에서 획득하고, 각 임의의 지점의 밝기는 그 주변 지점에서 현 픽셀까지 도달하는 빛의 양을 합하여 결정한다. 본 논문은 제안하는 방법은 옷감의 각 지점에 입사되는 광선을 개별적으로 조절 가능케 하여 옷감과 같이 내부 산란이 불규칙한 패턴을 보이는 재질을 더욱 사실적으로 표현할 수 있도록 하는 단서를 제공한다.
요즘 들어, 3차원 콘텐츠의 수요는 지속적으로 증가하고 있다. 3차원 콘텐츠의 품질은 해당 장면의 깊이 정보에 큰 영향을 받기 때문에 정확한 깊이 정보를 얻는 것이 매우 중요하다. 카메라와 객체 사이의 깊이 정보는 적외선 센서를 이용한 계산을 통해 직접 얻을 수 있다. 최근 들어, KINECT 카메라와 같이 카메라와 물체 사이의 거리를 적외선이나 광신호를 이용하여 직접 측정하는 Time-of-flight (ToF) 기술을 사용하는 깊이 측정 방법이 널리 사용되고 있다. 이러한 방법은 카메라와 객체 사이의 깊이 정보를 실시간으로 획득할 수 있다는 장점을 갖지만, 획득된 깊이맵에 잡음이 발생하고, 깊이맵의 해상도가 낮다는 단점을 갖는다. 최근 들어, 이런 문제를 해결하기 위해서 양방향 결합 업샘플링 방법 (JBU) 이나 잡음 제거 업샘플링 방법 (NAFDU) 과 같은 필터 기반의 방법이 제안되었다. 그러나 이러한 필터 기반의 업샘플링 방법은 업샘플링된 깊이맵에 색상영상의 질감이 복사되는 문제가 발생한다. 이 논문에서는 이러한 문제점을 해결하기 위해 고차 정규화항을 이용하여 에너지 함수를 만들고, 이를 최적화하여 깊이맵을 업샘플링 한다. 또한, 색상과 깊이맵의 경계 정보를 고려한 경계 가중치항을 추가하여 질감 복사 문제를 해결한다. 실험 결과, 제안하는 깊이맵 업샘플링 방법이 기존의 방법에 비해 깊이 정보의 품질은 유지하면서, 질감 복사 문제를 효과적으로 해결할 수 있음을 확인했다.
본 논문에서는 현실감 있는 렌더링을 위하여 최근 널리 사용되고 있는 영상 기반 조명(image-based lighting)과정을 실시간으로 처리하기위한 기술을 다룬다. 기존의 영상을 광원으로 사용하는 실시간 렌더링 기법에서는 주로 난반사(diffuse reflection)와 거울 면 정반사(mirror-like specular reflection)을 다루는 반면, 본 논문에서는 기존에 컴퓨터 그래픽스 분야에서 널리 사용하던 퐁 반사 모델(Phong reflection model)을 실시간으로 렌더링 하기 위한 방법을 제안한다. 특히 새로운 방법론 보다는 기존의 방법들을 확장하여 게임이나 실시간 미리보기 등의 응용에서 전통적인 방법으로 제작된 표면 속성을 가지는 기하객체를 보다 사실적으로 렌더링하기 위한 실용적인 방법을 제안한다. 난반사의 경우에는 기존의 방법과 유사하게 전처리 과정에서 원본 광원 영상으로부터 난반사를 실시간으로 계산하기 위한 영상을 생성하는 방법을 사용한다. 정반사의 경우에도 유사하게 전처리 과정에서 광택도(shininess)에 따른 반사 맵을 미리 생성하고 이를 물체의 광택도(shininess)에 따라서 보간하는 방법을 사용한다. 이와 같은 방법으로 실시간에 비교적 매우 적은 양의 계산과 적은 텍스처 참조를 통하여 영상 기반 조명을 근사할 수 있다.
차세대 3차원 디스플레이 및 서비스를 지원하기 위한 HEVC 기반 3차원 비디오 코딩 표준(3D-HEVC)이 최근 완료되었다. 3D-HEVC는 소수의 텍스처 영상(Texture image)과 깊이 영상(Depth map image)으로 구성된 Multi-view plus depth (MVD) 포맷을 효율적으로 처리하기 위한 표준으로써 H.264/AVC와 HEVC에서 사용하는 단일 계층 부호화 방법과 더불어 텍스처 영상들간, 깊이 영상들간, 텍스처 영상과 깊이 영상들간의 예측을 수행하는 인터-컴포넌트 부호화 기술을 추가적으로 사용한다. 본 논문에서는 3D-HEVC 표준의 일반적인 코딩 구조, 3D-HEVC 기술의 기반이 되는 인터-컴포넌트 부호화 기술 및 인터-컴포넌트 부호화 효율에 중요한 영향을 미치는 시차 벡터(Disparity vector) 유도 기술에 대해 상세히 소개한다. 또한 본 논문에서는 3D-HEVC의 부호화 효율을 검증하기 위해 각 시점을 HEVC로 부호화한 방법과 단순 다시점 확장 표준인 MV-HEVC와의 성능평가를 수행한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권4호
/
pp.1807-1823
/
2016
Local Binary Pattern (LBP) and its variants have powerful discriminative capabilities but most of them just consider each LBP code independently. In this paper, we propose sub oriented histograms of LBP for smoke detection and image classification. We first extract LBP codes from an image, compute the gradient of LBP codes, and then calculate sub oriented histograms to capture spatial relations of LBP codes. Since an LBP code is just a label without any numerical meaning, we use Hamming distance to estimate the gradient of LBP codes instead of Euclidean distance. We propose to use two coordinates systems to compute two orientations, which are quantized into discrete bins. For each pair of the two discrete orientations, we generate a sub LBP code map from the original LBP code map, and compute sub oriented histograms for all sub LBP code maps. Finally, all the sub oriented histograms are concatenated together to form a robust feature vector, which is input into SVM for training and classifying. Experiments show that our approach not only has better performance than existing methods in smoke detection, but also has good performance in texture classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.