• Title/Summary/Keyword: Map texture

Search Result 207, Processing Time 0.022 seconds

A Comparative Study of Fuzzy Relationship and ANN for Landslide Susceptibility in Pohang Area (퍼지관계 기법과 인공신경망 기법을 이용한 포항지역의 산사태 취약성 예측 기법 비교 연구)

  • Kim, Jin Yeob;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.301-312
    • /
    • 2013
  • Landslides are caused by complex interaction among a large number of interrelated factors such as topography, geology, forest and soils. In this study, a comparative study was carried out using fuzzy relationship method and artificial neural network to evaluate landslide susceptibility. For landslide susceptibility mapping, maps of the landslide occurrence locations, slope angle, aspect, curvature, lithology, soil drainage, soil depth, soil texture, forest type, forest age, forest diameter and forest density were constructed from the spatial data sets. In fuzzy relation analysis, the membership values for each category of thematic layers have been determined using the cosine amplitude method. Then the integration of different thematic layers to produce landslide susceptibility map was performed by Cartesian product operation. In artificial neural network analysis, the relative weight values for causative factors were determined by back propagation algorithm. Landslide susceptibility maps prepared by two approaches were validated by ROC(Receiver Operating Characteristic) curve and AUC(Area Under the Curve). Based on the validation results, both approaches show excellent performance to predict the landslide susceptibility but the performance of the artificial neural network was superior in this study area.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

Development and Application of Landslide Analysis Technique Using Geological Structure (지질구조자료를 이용한 산사태 취약성 분석 기법 개발 및 적용 연구)

  • 이사로;최위찬;장범수
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.247-261
    • /
    • 2002
  • There are much damage of people and property because of heavy rain every year. Especially, there are problem to major facility such as dam, bridge, road, tunnel, and industrial complex in the ground stability. So the counter plan for landslide or ground failure must be necessary In the study, the technique of regional landslide susceptibility assessment near the Ulsan petrochemical complex and Kumgang railway bridge was developed and applied using GIS. For the assessment, the geological structures such as bedding and fault were surveyed and the geological structure, topographic, soil, forest, and land use spatial database were constructed using CIS. Using the spatial database, the factors that influence landslide occurrence, such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of forest, and land use were calculated or extracted from the spatial database. For application of geological structure, the geological structure line and fault density were calculated. Landslide susceptibility was analyzed using the landslide-occurrence factors by probability method that is summation of landslide occurrence probability values per each factors range or type. The landslide susceptibility map can be used to assess ground stability to protect major facility.

  • PDF

Interpretation of Soil Catena for Agricultural Soils derived from Sedimentary Rocks (퇴적암 유래 농경지 토양에 대한 카테나 해석)

  • SONN, Yeon-Kyu;LEE, Dong-Sung;KIM, Keun-Tae;HYUN, Byung-Keun;JUN, Hye-Weon;JEON, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.1-14
    • /
    • 2017
  • In Korea, the soil series derived from sedimentary rocks are classified into seven soil series of coarse loamy soil such as Dain, Danbug, Dongam, Imdong, Jeomgog, Maryeong, and Yonggog; seventeen soil series of fine loamy soil such as Angye, Anmi, Banho, Bigog, Deoggog, Dogye, Dojeon, Gamgog, Gugog, Jincheon, Maji, Mungyeong, Oggye, Samam, Yanggog, Yeongwol, and Yulgog; six soil series of fine silty soil such as Goryeong, Bonggog, Juggog, Gyeongsan, Yuga, and Yugog; and four soil series of clayey soil such as Mitan, Pyeongan, Pyeongjeon, and Uji. All thirty-four soil series have different drainage rates and topography. However, the soil texture depends on the parent rock. The buffer functions in GIS (Geographic Information System) techniques were used to calculate adjacent soil series from a soil series. The length of the adjacent soil series was adjusted because a side of the buffer area was one meter long. The cluster analysis was conducted using the CCC (Cubic Clustering Criterion) method, in which the number of clusters is calculated based on the individual soil series ratio. Soil survey has been carried out since 1964 as "The reconnaissance soil survey", and 1:5,000 detailed soil survey was completed in 1999 with a five-years plan in Korea. Today, all the soil survey information has been computerized. GIS techniques were used to establish a digital soil map; however, there have not been any studies to interpret pedogenesis using the GIS technique. In this study, the area of the adjacent soil series were obtained using the GIS technique. The area of the adjacent soil series can be calculated based on the information area. The similarities of soil originated from sedimentary rocks were estimated using the length. As a result, the distribution of grain size was different based on the types of sedimentary rocks and the location. The clusters were distinguished into limestone, sandstone, and shale. In addition, the soil derived from shale was divided into red shale and gray shale. This means that quantitative interpretation of the catena and this established method can be used to interpret the relationship between soil series.

Solid Waste Disposal Site Selection in Rural Area: Youngyang-Gun, Kyungpook (농촌지역 쓰레기 매립장 입지선정에 관한 연구 -경상북도 영양군을 사례로-)

  • Park, Soon-Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.63-80
    • /
    • 1997
  • This study attempts to establish the criteria of site selection for establishing solid waste disposal facility, to determine optimal solid waste disposal sites with the criteria, and to examine the suitability of the selected sites. The Multi-Criteria Evaluation(MCE) module in Idrisi is used to determine optimal sites for solid waste disposal. The MCE combines the information from several criteria in interval and/or ratio scale to form a single index of evaluation without leveling down the data scale into ordinal scale. The summary of this study is as follows: First, the considerable criteria are selected through reviewing the literature and the availability of data: namely, percent of slope, fault lines, bedrock characteristics, major residential areas, reservoirs of water supply, rivers, inundated area, roads, and tourist resorts. Second, the criteria maps of nine factors have been developed. Each factor map is standardized and multiplies by its weight, and then the results are summed. After all of the factors have been incorporated, the resulting suitability map is multiplied by each of the constraint in turn to "zero out" unsuitable area. The unsuitable areas are discovered in urban district and its adjacencies, and mountain region as well as river, roads, resort area and their adjacency districts. Third, the potential sites for establishing waste disposal facilities are twenty five districts in Youngyang-gun. Five districts are located in Subi-myun Sinam-ri, nine districts in Chunggi-myun Haehwa-ri and Moojin-ri, and eleven districts in Sukbo-myun Posan-ri. The first highest score of suitability for waste disposal sites is shown at number eleven district in Chunggi-myun Moojin-ri and the second highest one is discovered at number twenty one district in Sukbo-myun Posan-ri that is followed by number nine district in Chunggi-myun Haehwa-ri, number seventeen and twenty three in Sukbo-myun Posan-ri, and number two in Subi-myun Sinam-ri. The first lowest score is found in number six district in Chunggi-myun Haehwa-ri, and the second lowest one is number five district in Subi-myun Sinam-ri. Finally, the Geographic Information System (GIS) helps to select optimal sites with more objectively and to minimize conflict in the determination of waste disposal sites. It is important to present several potential sites with objective criteria for establishing waste disposal facilities and to discover characteristics of each potential site as a result of that final sites of waste disposal are determined through considering thought of residents. This study has a limitation of criteria as a result of the restriction of availability of data such as underground water, soil texture and mineralogy, and thought of residents. To improve selection of optimal sites for a waste disposal facility, more wide rage of spatial and non-spatial data base should be constructed.

  • PDF

Landslide Vulnerability Mapping considering GCI(Geospatial Correlative Integration) and Rainfall Probability In Inje (GCI(Geospatial Correlative Integration) 및 확률강우량을 고려한 인제지역 산사태 취약성도 작성)

  • Lee, Moung-Jin;Lee, Sa-Ro;Jeon, Seong-Woo;Kim, Geun-Han
    • Journal of Environmental Policy
    • /
    • v.12 no.3
    • /
    • pp.21-47
    • /
    • 2013
  • The aim is to analysis landslide vulnerability in Inje, Korea, using GCI(Geospatial Correlative Integration) and probability rainfalls based on geographic information system (GIS). In order to achieve this goal, identified indicators influencing landslides based on literature review. We include indicators of exposure to climate(rainfall probability), sensitivity(slope, aspect, curvature, geology, topography, soil drainage, soil material, soil thickness and soil texture) and adaptive capacity(timber diameter, timber type, timber density and timber age). All data were collected, processed, and compiled in a spatial database using GIS. Karisan-ri that had experienced 470 landslides by Typhoon Ewinia in 2006 was selected for analysis and verification. The 50% of landslide data were randomly selected to use as training data, while the other 50% being used for verification. The probability of landslides for target years (1 year, 3 years, 10 years, 50 years, and 100 years) was calculated assuming that landslides are triggered by 3-day cumulative rainfalls of 449 mm. Results show that number of slope has comparatively strong influence on landslide damage. And inclination of $25{\sim}30^{\circ}C$, the highest correlation landslide. Improved previous landslide vulnerability methodology by adopting GCI. Also, vulnerability map provides meaningful information for decision makers regarding priority areas for implementing landslide mitigation policies.

  • PDF

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.