• Title/Summary/Keyword: Map reduce

Search Result 852, Processing Time 0.021 seconds

Phosphorus and Nitrogen Reduction from Animal Wastewater with MAP Process (축산폐수에서 질소$\cdot$인의 추출을 위한 MAP공정 개발)

  • Oh I. H.;Lee J. H.;Jeung D. S.;Jo J. W.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2005
  • To reduce phosphorus and nitrogen from the swine wastewater, magnesium chloride $(MgCl_2)$ was used as a reaction material for both soluble phosphorus (SP) and ammonia-nitrogen (AN). The initial value of SP content were $471mg/\ell$ far aeration test and $515 mg/\ell$ for NaOH addition test, but treatment of $MgCl_2$ reduced SP value to $5mg/\ell$ and $4mg/\ell$. The removal efficiency of $MgCl_2$ for SP showed $99\%$ in both treatment, and the removal efficiency of $MgCl_2$ for AN showed $15\%$ with treatment of aeration and $18\%$ with NaOH. All the experiments were done in a low temperature of 6 to $8^{\circ}C$, suggesting that this methods are possibly able to apply to a cold weather conditions. Moreover, the struvite crystal structure was identified by electronic microscope, implying that $MgCl_2$ is an effective material for removal of SP from swine wastewater In addition to the increased removal rate of the AN in wastewater, both $MgCl_2$ and $KH_2PO_4$ were added. The SP value was reduced by $99\%$ with 2g addition of the phosphate. The SP removal rate by 4g addition of the phosphate was increased only as $15-19\%$, but the quantity of removed SP was higher than that of 2g addition test. The value of AN was not reduced as expected by adding $KH_2PO_4$. The AN removal rate were low as $18\%$ and $15\%$ like as the level of the former test with $MgCl_2$ alone. Therefore, it is needed to examine closely the reaction mechanism f3r reducing both SP and AN simultaneously.

  • PDF

Soil Erosion Risk Assessment in the Upper Han River Basis Using Spatial Soil Erosion Map (분포형 토양침식지도를 이용한 한강상류지역 토양유실 위험성 평가)

  • Park, Chan-Won;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hong, S.-Young;Hyun, Byung-Keun;Song, Kwan-Cheol;Ha, Sang-Keun;Moon, Young-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.828-836
    • /
    • 2010
  • This study was conducted to evaluate soil erosion risk with a standard unit watershed in the upper Han river basin using the spatial soil erosion map according to the change of landuse. The study area is 14,577 $km^2$, which consists of 10 subbasins, 107 standard unit watersheds. Total annual soil loss and soil loss per area estimated were $895{\times}10^4\;Mg\;yr^{-1}$ and 6.1 Mg $ha^{-1}\;yr^{-1}$, respectively. A result of analysis with a subbasin as a unit showed that annual soil losses and soil loss per area in Namhan river basins was more than in Bukhan river ones. Predicted annual soil loss according to the landuse ranked as Forest & Grassland > Upland ${\gg}$ Urban & Fallow area > Paddy field > Orchard. Upland area covered 6.2% of the study area, but the contribution of total annul soil loss was 40.6% and that of Forest & Grassland was 44.2%. As a evaluation of soil erosion risk using the spatial soil erosion map, we could precisely conformed the potential hazardous region of soil erosion in each unit watersheds. The ratio of regions, graded as higher "Moderate" for annual soil loss, were respectively 8.7%, 7.9% and 7.8% in 1001, 1002 and 1003 subbasins in Namhan river basin. Most landuse of these area was upland, and these area is necessary to establish soil conservation practices to reduce soil erosion based on the field observation.

Machine Learning Based MMS Point Cloud Semantic Segmentation (머신러닝 기반 MMS Point Cloud 의미론적 분할)

  • Bae, Jaegu;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.939-951
    • /
    • 2022
  • The most important factor in designing autonomous driving systems is to recognize the exact location of the vehicle within the surrounding environment. To date, various sensors and navigation systems have been used for autonomous driving systems; however, all have limitations. Therefore, the need for high-definition (HD) maps that provide high-precision infrastructure information for safe and convenient autonomous driving is increasing. HD maps are drawn using three-dimensional point cloud data acquired through a mobile mapping system (MMS). However, this process requires manual work due to the large numbers of points and drawing layers, increasing the cost and effort associated with HD mapping. The objective of this study was to improve the efficiency of HD mapping by segmenting semantic information in an MMS point cloud into six classes: roads, curbs, sidewalks, medians, lanes, and other elements. Segmentation was performed using various machine learning techniques including random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and gradient-boosting machine (GBM), and 11 variables including geometry, color, intensity, and other road design features. MMS point cloud data for a 130-m section of a five-lane road near Minam Station in Busan, were used to evaluate the segmentation models; the average F1 scores of the models were 95.43% for RF, 92.1% for SVM, 91.05% for GBM, and 82.63% for KNN. The RF model showed the best segmentation performance, with F1 scores of 99.3%, 95.5%, 94.5%, 93.5%, and 90.1% for roads, sidewalks, curbs, medians, and lanes, respectively. The variable importance results of the RF model showed high mean decrease accuracy and mean decrease gini for XY dist. and Z dist. variables related to road design, respectively. Thus, variables related to road design contributed significantly to the segmentation of semantic information. The results of this study demonstrate the applicability of segmentation of MMS point cloud data based on machine learning, and will help to reduce the cost and effort associated with HD mapping.

Mapping CO2 Emissions Using SNPP/VIIRS Nighttime Light andVegetation Index in the Korean Peninsula (SNPP/VIIRS 야간조도와 식생지수를 활용한 한반도 CO2 배출량 매핑)

  • Sungwoo Park;Daeseong Jung;Jongho Woo;Suyoung Sim;Nayeon Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • As climate change problem has recently become serious, studies are being conducted to identify carbon dioxide (CO2) emission dynamics based on satellite data to reduce emissions. It is also very important to analyze spatial patterns by estimating and mapping CO2 emissions dynamic. Therefore, in this study, CO2 emissions in the Korean Peninsula from 2013 to 2020 were estimated and mapped. To spatially estimate and map emissions, we use the enhanced vegetation index adjusted nighttime light index, an index that combines nighttime light (NTL) and vegetation index, to map both areas where NTL is observed and areas where NTL is not observed. In order to spatially estimate and map CO2 emissions, the total annual emissions of the Korean Peninsula were calculated, resulting in an increase of 11% from 2013 to 2017 and a decrease of 13% from 2017 to 2020. As a result of the mapping, it was confirmed that the spatial pattern of CO2 emissions in the Korean Peninsula were concentrated in urban areas. After being divided into 17 regions, which included the downtown area, the metropolitan area accounted for roughly 40% of CO2 emissions in the Korean Peninsula. The region that exhibited the most significant change from 2013 to 2020 was Sejong City, showing a 96% increase.

Quality Changes of 'Baumkuchen' Cake with Modified Atmosphere Packaging during Storage (변형기체포장 처리에 따른 '바움쿠헨' 케이크의 저장 중 품질 특성 변화)

  • Myungho Lee;Minhwi Kim;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.2
    • /
    • pp.87-94
    • /
    • 2023
  • Fresh bakery products are widely consumed worldwide and therefore particular requirements for their quality characteristics have been established. The shelf life of bakery products is mainly subjected to microbial spoilage and staling. This study investigated the optimum conditions of modified atmosphere packaging (MAP) application to extend the shelf life of the bakery products. The gas conditions of the headspace in 'Baumkuchen' cake were 0, 30, 70, and 100% CO2 concentrations and stored at 30℃ for 5 days. The bakery samples were evaluated weight loss, hardness, color change, pH and total aerobic bacteria, yeast and molds count throughout the storage period. Values of the weight loss and hardness were increased over the storage period, meanwhile pH was significantly decreased. However, no significant color changes were observed during storage. It was also found no significant difference between the different gas treatments. Total aerobic bacteria count of the stored samples after day 5 was increased by 6.94 log CFU/g in the air filled package, compared to 6.20 log CFU/g in the 100% CO2 filled package and 6.02 log CFU/g in the 70% CO2 filled package. Yeast and molds count were 3.65 log CFU/g in air filled package, 2.66 log CFU/g in 100% CO2 filled package, 2.64 log CFU/g in 70% CO2 filled package, 2.86 log CFU/g in 30% CO2 filled package and 3.31 log CFU/g in 100% N2 filled package on day 2. In conclusion, it was shown that 70% and 100% CO2 treatments in the package were effective to reduce microbial growth.

Generation of Progressively Sampled DTM using Model Key Points Extracted from Contours in Digital Vector Maps (수치지도 등고선의 Model Key Point 추출과 Progressive Sampling에 의한 수치지형모델 생성)

  • Lee, Sun-Geun;Yom, Jae-Hong;Lim, Sae-Bom;Kim, Kye-Lim;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_2
    • /
    • pp.645-651
    • /
    • 2007
  • In general, contours in digital vector maps, which represent terrain characteristics and shape, are created by 3D digitizing the same height points using aerial photographs on the analytical or digital plotters with stereoscopic viewing. Hence, it requires lots of task, and subjective decision and experience of the operators. DTMs are generated indirectly by using contours since the national digital maps do not include digital terrain model (DTM) data. In this study, model key points which depict the important information about terrain characteristics were extracted from the contours. Further, determination of the efficient and flexible grid sizes were proposed to generate optimal DTM in terms of both quantitative and qualitative aspects. For this purpose, a progressive sampling technique was implemented, i.e., the smaller grid sizes are assigned for the mountainous areas where have large relief while the larger grid sizes are assigned for the relatively flat areas. In consequence, DTMs with multi-grid for difference areas could be generated instead of DTMs with a fixed grid size. The multi-grid DTMs reduce computations for data processing and provide fast display.

On the Source Identification by Using the Sound Intensity Technique in the Radiated Acoustic Field from Complicated Vibro-acoustic Sources (음향 인텐시티 기법을 이용한 복잡한 진동-음향계의 방사 음장에 대한 음원 탐색에 관하여)

  • 강승천;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.708-718
    • /
    • 2002
  • In this paper, the problems in identifying the noise sources by using the sound intensity technique are dealt with for the general radiated near-field from vibro-acoustic sources. For this purpose, a three-dimensional model structure resembling the engine room of a car or heavy equipment is considered. Similar to the practical situations, the model contains many mutually coherent and incoherent noise sources distributed on the complicated surfaces. The sources are located on the narrow, connected, reflecting planes constructed with rigid boxes, of which a small clearance exists between the whole box structure and the reflecting bottom. The acoustic boundary element method is employed to calculate the acoustic intensity at the near-field surfaces and interior spaces. The effects of relative source phases, frequencies, and locations are investigated, from which the results are illustrated by the contour map, vector plot, and energy streamlines. It is clearly observed that the application of sound intensity technique to the reactive or reverberant field, e.g., scanning over the upper engine room as is usually practiced, can yield the detection of fake sources. For the precise result for such a field, the field reactivity should be checked a priori and the proper effort should be directed to reduce or improve the reactivity of sound field.

Railway Track Extraction from Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구)

  • Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.

Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해양관측위성 (GOCI) 자료를 이용한 광합성 유효광량 추정)

  • Kim, Jihye;Yang, Hyun;Choi, Jong-Kuk;Moon, Jeong-Eon;Frouin, Robert
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.253-262
    • /
    • 2016
  • Here, we estimated daily Photosynthetically Available Radiation (PAR) from Geostationary Ocean Colour Imager (GOCI) and compared it with daily PAR derived from polar-orbiting MODIS images. GOCI-based PAR was also validated with in-situ measurements from ocean research station, Socheongcho. GOCI PAR showed similar patterns with in-situ measurements for both the clear-sky and cloudy day, whereas MODIS PAR showed irregular patterns at cloudy conditions in some areas where PAR could not be derived due to the clouds of sunglint. GOCI PAR had shown a constant difference with the in-situ measurements, which was corrected using the in-situ measurements obtained on the days of clear-sky conditions at Socheongcho station. After the corrections, GOCI PAR showed a good agreement excepting on the days with so thick cloud that the sensor was optically saturated. This study revealed that GOCI can estimate effectively the daily PAR with its advantages of acquiring data more frequently, eight times a day at an hourly interval in daytime, than other polar orbit ocean colour satellites, which can reduce the uncertainties induced by the existence and movement of the cloud and insufficient images to map the daily PAR at the seas around Korean peninsula.

Position Based Triangulation for High Performance Particle Based Fluid Simulation (위치 기반 삼각화를 이용한 입자 기반 유체 시뮬레이션 가속화 기법)

  • Hong, Manki;Im, Jaeho;Kim, Chang-Hun;Byun, Hae Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • This paper proposes a novel acceleration method for particle based large scale fluid simulation. Traditional particle-based fluid simulation has been implemented by interacting with physical quantities of neighbor particles through the Smoothed Particle Hydrodynamics(SPH) technique[1]. SPH method has the characteristic that there is no visible change compared to the computation amount in a part where the particle movement is small, such as a calm surface or inter-fluid. This becomes more prominent as the number of particles increases. Previous work has attempted to reduce the amount of spare computation by adaptively dividing each part of the fluid. In this paper, we propose a technique to calculate the motion of the entire particles by using the physical quantities of the near sampled particles by sampling the particles inside the fluid at regular intervals and using them as reference points of the fluid motion. We propose a technique to adaptively generate a triangle map based on the position of the sampled particles in order to efficiently search for nearby particles, and we have been able to interpolate the physical quantities of particles using the barycentric coordinate system. The proposed acceleration technique does not perform any additional correction for two classes of fluid particles. Our technique shows a large improvement in speed as the number of particles increases. The proposed technique also does not interfere with the fine movement of the fluid surface particles.