• 제목/요약/키워드: Many-objective Optimization

검색결과 196건 처리시간 0.033초

다목적 최적화를 고려한 배차계획 시스템 (A Vehicle Fleet Planning System with Multi-objective Optimization)

  • 양병희;이영애
    • 한국경영과학회지
    • /
    • 제19권3호
    • /
    • pp.63-79
    • /
    • 1994
  • Many vehicle fleet planning systems have been suggested to minimize the routing distances of vehicles or reduce the transportation cost. But the more considerations the method takes, the higher complexites are involved in a large number of practical situations. The purpose of this paper is to vehicle fleet planning system. This paper is considered multi-objective optimization. The vehicle fleet planning system developed by this study involves such complicated and restricted conditions as one depot, multiple nodes (demand points), multiple vehicle types, multipel order items, and other many restrictions for operating vehicles. The proposed algorithm is compared with the nearest neighbor heuristic (NNH) and the savings heuristic (SAH) algorithm in terms of total logistics cost and driving time. This method constructs a route with a minimum number of vehicles for a given demand. This method can be used to any companys which vehicle fleet planning system under circumstances considered in this paper.

  • PDF

AN IMPLEMENTATION OF WEIGHTED L$_{\infty}$ - METRIC PROGRAM TO MULTIPLE OBJECTIVE PROGRAMMING

  • Lee, Jae-Hak
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제3권1호
    • /
    • pp.73-81
    • /
    • 1996
  • Multiple objective programming has been a popular research area since 1970. The pervasiveness of multiple objective in decision problems have led to explosive growth during the 1980's. Several approaches (interactive methods, feasible direction methods, criterion weight space methods, Lagrange multiplies methods, etc) have been developed for solving decision problems having multiple objectives. However there are still many mathematically challengings including multiple objective integer, nonlinear optimization problems which require further mathematically oriented research. (omitted)

  • PDF

PSO 최적화 기법을 이용한 Ethylene Oxide Plant 배치에 관한 연구 (The Research of Optimal Plant Layout Optimization based on Particle Swarm Optimization for Ethylene Oxide Plant)

  • 박평재;이창준
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.32-37
    • /
    • 2015
  • In the fields of plant layout optimization, the main goal is to minimize the construction cost including pipelines as satisfying all constraints such as safety and operating issues. However, what is the lacking of considerations in previous researches is to consider proper safety and maintenance spaces for a complex plant. Based on the mathematical programming, MILP(Mixed Integer Linear Programming) problems including various constraints can be formulated to find the optimal solution which is to achieve the best economic benefits. The objective function of this problem is the sum of piping cost, pumping cost and area cost. In general, many conventional optimization solvers are used to find a MILP problem. However, it is really hard to solve this problem due to complex inequality and equality constraints, since it is impossible to use the derivatives of objective functions and constraints. To resolve this problem, the PSO (Particle Swarm Optimization), which is one of the representative sampling approaches and does not need to use derivatives of equations, is employed to find the optimal solution considering various complex constraints in this study. The EO (Ethylene Oxide) plant is tested to verify the efficacy of the proposed method.

공군기지의 C-UAS 센서 배치를 위한 다목적 최적화 모델 (Multi-objective Optimization Model for C-UAS Sensor Placement in Air Base)

  • 신민철;최선주;박종호;오상윤;정찬기
    • 한국군사과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.125-134
    • /
    • 2022
  • Recently, there are an increased the number of reports on the misuse or malicious use of an UAS. Thus, many researchers are studying on defense schemes for UAS by developing or improving C-UAS sensor technology. However, the wrong placement of sensors may lead to a defense failure since the proper placement of sensors is critical for UAS defense. In this study, a multi-object optimization model for C-UAS sensor placement in an air base is proposed. To address the issue, we define two objective functions: the intersection ratio of interested area and the minimum detection range and try to find the optimized placement of sensors that maximizes the two functions. C-UAS placement model is designed using a NSGA-II algorithm, and through experiments and analyses the possibility of its optimization is verified.

시뮬레이션 최적화 기법과 절삭공정에의 응용 (Simulation Optimization Methods with Application to Machining Process)

  • 양병희
    • 한국시뮬레이션학회논문지
    • /
    • 제3권2호
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

기계학습을 이용한 파레토 프런티어의 생성 (Generating of Pareto frontiers using machine learning)

  • 윤예분;정나영;윤민
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.495-504
    • /
    • 2013
  • 진화 알고리즘 계산 지능을 이용한 예측 방법이 다목적 최적화 문제에서 많이 이용되고 있고, 이러한 방법들은 많은 근사 파레토 최적해들을 좀 더 정확하게 생성하기 위해서 개선되고 있다. 본 논문은 다목적 최적화 문제에서 서포트 벡터기계를 이용하여 근사 파레토 프런티어를 찾는 방법을 제안한다. 또한 제안된 방법과 진화 알고리즘을 결합한 것이 파레토 프런티어를 더 잘 근사시킨다는 것과 두 개혹은 세 개의 목적함수를 가진 의사결정은 제안된 방법으로 파레토 프런티어를 시각화한 것에 근거하여 더 쉽게 수행된다는 것을 보인다. 마지막으로 몇 개의 수치예제를 통해 제안된 방법의 효율성에 대해 보일 것이다.

면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계 (Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm)

  • 최병근;양보석
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

가공특성 지식DB를 통한 고속가공에서 최적조건선정에 관한 연구 (A Study on Optimization of Cutting Conditions Using Machining Characteristics DB in High Speed Machining)

  • 원종률;남성호;홍원표;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.163-168
    • /
    • 2005
  • It is one of the most important things to determinate optimized cutting conditions which satisfy productivity and cost simultaneously in production and CAPP systems. These days many researchers have figured out the optimizing way for solutions of multi-object function to find the approach methods using algorithm such as genetic algorithm or tabu search, etc., instead of mathematical methods. The main creation of objective function is proposed by empirical method but which is difficult to set it up and to analysis. In this paper, an optimization method of cutting condition is shown using the ANN and GA for the multi-objective function in high speed machining.

  • PDF

Steel nitriding optimization through multi-objective and FEM analysis

  • Cavaliere, Pasquale;Perrone, Angelo;Silvello, Alessio
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.71-90
    • /
    • 2016
  • Steel nitriding is a thermo-chemical process leading to surface hardening and improvement in fatigue properties. The process is strongly influenced by many different variables such as steel composition, nitrogen potential, temperature, time, and quenching media. In the present study, the influence of such parameters affecting physic-chemical and mechanical properties of nitride steels was evaluated. The aim was to streamline the process by numerical-experimental analysis allowing defining the optimal conditions for the success of the process. Input parameters-output results correlations were calculated through the employment of a multi-objective optimization software, modeFRONTIER (Esteco). The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated, through control designs, and optimized by taking into account physical and processing conditions.