References
- Binh, T. T. and Korn, U. (1997). MOBES: A multiobjective evolution strategy for constrained optimization problems. Proceedings of the 3rd International Conference on Genetic Algorithms, 176-182.
- Coello Coello, C. A., Van Veldhuizen, D. A. and Lamont, G. B. (2002). Evolutionary algorithms for solving multi-objective problems, Kluwer Academic Publishers, New York.
- Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, John & Wiley Sons, New York.
- Deb, K., Ptratap, A. and Moitra, S. (2000). Mechanical component design for multiple objectives using elitist non-dominated sorting GA. Proceedings of the Parallel Problem Solving from Nature VI (PPSN-VI), 859-868.
- Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Boston.
- Holland, J. H. (1975). Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor.
- Hwang, C. and Shim, J. (2012). Mixed effects least squares support vector machine for survival data analysis. Journal of the Korean Data & Information Science Society, 23, 739-748. https://doi.org/10.7465/jkdi.2012.23.4.739
- Nakayama, H., Yun, Y. B. and Yoon, M. (2009). Sequential approximate multiobjective optimization using computational intelligence, Springer Verlag, Berlin Heidelberg.
-
Palli, N., Azram, S., McCluskey, P. and Sundararajan, R. (1998). An interactive multistage
${\epsilon}$ -inequality constraint method for multiple objectives decision making. ASME Journal of Mechanical Design, 120, 678-686. https://doi.org/10.1115/1.2829331 - Park, D. J., Yun, Y. B. and Yoon, M. (2012). Prediction of bankruptcy data using machine learning techniques. Journal of the Korean Data & Information Science Society, 23, 569-577. https://doi.org/10.7465/jkdi.2012.23.3.569
- Poles, S. (2003). MOGA-II An improved multi-objective genetic algorithm, Esteco Achieving Perfection Technical Report 2003-006, 1-14.
- Sawaragi, Y., Nakayama, H. and Tanino, T. (1985). Theory of multiobjective optimization, Academic Press Inc., Boston.
- Scholkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J. and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13, 1443-1471. https://doi.org/10.1162/089976601750264965
- Scholkopf, B. and Smola, A. J. (2002). Learning with kernels, MIT Press, New York.
- Seok, K. H. (2010). Semi-supervised classification with LS-SVM formulation. Journal of the Korean Data & Information Science Society, 21, 461-470.
- Steinwart, I. and Christmann, A. (2008). Support vector machines, Springer, New York.
- Vapnik, V. N. (1995). The nature of statistical learning theory, Springer Verlag, New York.
- Yun, Y. B., Nakayama, H., Tanino, T. and Arakawa, M. (2001). Generation of efficient frontiers in multi-objective optimization problems by generalized data envelopment analysis. European Journal of Operational Research, 129, 586-595. https://doi.org/10.1016/S0377-2217(99)00469-5