• Title/Summary/Keyword: Manure additives

Search Result 32, Processing Time 0.024 seconds

Effect of Manure Additives Mixed with Probiotics and Zeolite on Harmful Gas Production Released From Pig Slurry (생균제와 제올라이트를 혼합한 축분첨가제가 돈분 슬러리에서 발생하는 유해 가스 발생량에 미치는 영향)

  • Jang, Woo-Whan;Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.99-102
    • /
    • 2022
  • The aim of this study was to investigate the effect of manure additives mixed with probiotics and zeolite on harmful gas production generated by pig slurry. A total of 180 crossbred pigs ([Yorkshire × Land race] × Duroc, live weight 70±3.21 kg) were allotted to a completely randomized design with 3 treatments and 3 replications (20 heads per replicate). The treatments consisted of 0% (control), 0.05% (T1), or 1% (T2) of manure additives mixed with probiotics and zeolite. Manure additives were added weekly to pig slurry pits (2 m × 4.5 m × 1.2 m) on a volumetric basis. For ammonia measured at both 10 cm and 90 cm above the pig slurry pit, a statistical significance (p<0.05) was found in probiotics and zeolite-treated manure additives at weeks 1 - 3, except for week 0. In addition, hydrogen sulfide levels measured at 10 cm above the pig slurry pit were not affected by the manure additive at weeks 0 and 1, but showed a significant statistical difference at weeks 2 and 3 (p<0.05). Therefore, supplementing pig slurry with 0.05% and 0.1% manure additives mixed with probiotics and zeolite was found to be effective in reducing environmental pollution in pig facilities.

Changes of Nitrogen and Soluble Reactive Phosphorus Content in Hanwoo Manure Using Probiotics to Feed and Manure: A Field Study (사료와 축분에 생균제 첨가 시 한우분 내 질소와 수용성인의 함량 변화: 현장연구 중심으로)

  • Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.379-383
    • /
    • 2013
  • This study was conducted to investigate the changes in nitrogen and soluble reactive phosphorus(SRP) contents from hanwoo manure using probiotics to feed and manure additives during 5 weeks. A total of 45 hanwoo(24 months old) with averaging $580{\pm}20$ kg in weight were randomly assigned to 3 dietary treatments with 3 replicates per treatment(5 hanwoo per pen, $5{\times}8m$). The treatment were supplemented, control, T1(10 kg roughage + 2 kg concentrate(2% probiotics as-fed basis)), and T2(10 kg roughage + 2 kg concentrate(2% probiotics as-fed basis) + 7 kg probiotics on the surface of hanwoo manure (top-dressing)). During the experimental period, there were statistically significant differences(P<0.05) in pH values at 3 and 5 weeks; TN contents at 5 weeks; and SRP contents at 5 weeks in all treatments. Adding probiotics to feed or feed and manure increased manure pH in comparison with controls. As time increased, changes in TN contents decreased in the order: T2 > Control > T1. Especially, the reduction in SRP contents in all treatments at 5 weeks was in following order: T1 > T2 > Control. This result suggests that it is possible to make efficient use of probiotics as feed and manure additives for reducing environmental pollution or to provide fundamental information on livestock managements to producers.

Effects of Microbial Additives on the Chemical Characteristics, Microbes, Gas Emissions, and Compost Maturity of Hanwoo Steer Manure (미생물 첨가제가 거세한우 분의 이화학적 특성, 미생물 성상, 가스 발생량 및 퇴비 부숙도에 미치는 영향)

  • Young Ho Joo;Myeong Ji Seo;Seung Min Jeong;Ji Yoon Kim;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.4
    • /
    • pp.264-269
    • /
    • 2022
  • The present study investigated effects of microbial additives on the floor of Hanwoo steer manure in barn. The treatment following: without additives (CON); additives (AMA). Each treatment used 3 barns as replication and each barn contained 5 Hanwoos. The Hanwoo steer manure in barns was sub-sampled from 5 sides of pen at 0, 4 and 12 weeks. The sub-samples were used for analyses of chemical compositions, microbial counts, gas emissions and compost maturity. The concentrations of moisture, organic matter, total nitrogen and carbon-to-nitrogen (C/N ratio) of Hanwoo steer manure before the microbial additives were each 59.1%, 83.2%, 1.78% and 50.0%, respectively. The counts of lactic acid bacteria, Yeast, Bacillus subtilis, and Escherichia coli (E. coli) were each 5.94, 6.83, 7,28 and 5.52 cfu/g, but Salmonella was not detected. The ammonia-N gas was 4.67 ppm, but hydrogen sulfide gas was not detected. After 4 weeks, moisture, organic matter, total nitrogen, pH and yeast count were lowest (p<0.05). The lactic acid bacteria, yeast, Escherichia coli (E. coli) and ammonia-N gas were not effects of microbial additives. All treatments was not detected at Salmonella count and hydrogen sulfide emission, and compost maturity was completed. After 12 weeks, the lactic acid bacteria and Bacillus subtilis were highest in AMA, while moisture, yeast and E. coli were lowest (p<0.05). The ammonia-N gas was not effect by microbial additive. Salmonella and hydrogen sulfide emission were not detected in all treatments, and compost maturity was completed. Therefore, in present study, the microbial additive did not affect of gas and compost maturity, but the pathogenic microorganism such as E. coli, were inhibited by microbial additives.

Effects of Manure Additives on pH and Pathogen Populations in Hanwoo (Korean native cattle) Manure (축분 첨가제를 한우분에 첨가시 pH와 유해성 병원균에 미치는 영향에 관한 연구)

  • Kim, Sam-Churl;Amanullah, S.M.;Kim, Dong-Hyeon;Lee, Hyuk-Jun;Choi, Jung-Hoon;Lee, Gee-Dong;Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1529-1533
    • /
    • 2012
  • The objective of this study was to evaluate the effect of applying alum (aluminum sulfate) and aluminum chloride on pH and pathogen populations of Hanwoo manure. A total of 36 steers (8 months old and averaging 300 kg in weight) were used in this trial and allotted to 9 pens (3 replication pens per group with 4 steers per experimental unit, $5{\times}8$ m). Chemical additives were applied as a top dressing with garden rake to a depth of 1 cm of manure with wood shavings in each treatment. The chemical amendments were control (without chemical amendments), 50 g of alum and 50 g of aluminum chloride/kg of Hanwoo manure. The experiment was carried out for 4 weeks. Adding alum and aluminum chloride to Hanwoo manure reduced (P < 0.05) pH compared to untreated controls during the 4-wk period. Both levels of the alum and aluminum chloride treatments tested decreased (P < 0.05) Escherichia coli and Salmonella enterica populations in Hanwoo manure at 2 and 4 weeks. It appears that the reduction in pathogen populations was primarily associated with the lower manure pH. If more strict environmental regulations are put into effect regarding pathogen populations from Hanwoo facilities, treating Hanwoo manure with alum and aluminum chloride may be a good management practice.

A Review of the Odor Control From Inside of Swine Production Facilities (양돈시설 내부의 악취조졸에 관한 기술 및 연구동향)

  • 김두환;김인배
    • Journal of Animal Environmental Science
    • /
    • v.5 no.3
    • /
    • pp.203-216
    • /
    • 1999
  • Recent public concern about air pollution caused by swine production facilities has forced to develop the methods to reduce and control the swine odors. Swine odors were affected the life of pig farm neighborhoods, swine productivity, pig health, diseases, and human right, safety, sanity as negatively. The first approaches of control of swine odors are the change or improve of the classical management systems, which are manure treatment method, manure storage facility, phase feeding, sex-divided feeding, feeder type, liquid-slurry feeding, environment control of swine building and dust control of indoor swine facility. The methods to control odor emission from manure have to include the diet modification as nutritional basis. In recent, research emphasis has focused on manipulating the swine diet to increase the nutrient utilization of the diet to reduce excretion products and reduction of odors. There are lots of feed additives and pit additives introduced as practical basis for reducing odor emissions. The ozone treatment method is candidate as the good system for reducing swine odor. But this system is still too expensive to practice in present.

The Nutrients and Microbial Properties of Animal Manure and Spent Mushroom Compost Tea and the Effect of Growth of Lettuce (Lactuca sativa L.) (가축분뇨와 폐버섯 퇴비차의 양분 및 미생물적 특성과 상추의 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.589-602
    • /
    • 2011
  • In this study, experiments were conducted to determine the effect of different compost teas on plant growth reponses and yield of leaf lettuce. Compost tea is a liquid extract of compost obtained by mixing compost and water for a defined period of time. The pig manure and spent mushroom compost were made by steeping compost in water. Compost tea was aerated from 24 hours and molasses and kelp were added as supplements. The four types of compost were tested growth of lettuce. EC of animal manure compost tea was higher than that of spent mushroom compost tea. Mineral nutrients were significantly higher in animal manure compost tea compared with spent mushroom compost tea. Compost tea contains nutrient and a ranges of different organisms. The beneficial fungi and actinomycetes were prominent in a spent mushroom compost tea. Compost tea from animal manure had the higher numbers of total bacteria. The actinomycetes densities were high in spent mushroom compost tea. But actinomycetes were not founded in animal manure compost tea. The growth characteristics of lettuce in animal manure compost tea were higher than those of spent mushroom compost tea. And also SPAD value in leaf was high in plot treated with animal manure compost tea. The fresh yield of lettuce in animal compost tea was higher by 181% that of control plot. The effect of compost tea on growth of lettuce was largely attributable to mineral nutrient.

Feasibility Study on Use of Livestock Manure as Solid Refuse Fuel by Torrefaction Method (반탄화 기술을 이용한 가축분뇨의 고형연료화 가능성 연구)

  • Lee, Yongho;Sanjusren, Oyun-Erdene;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.560-571
    • /
    • 2019
  • In the study, used torrefaction method to make sample from organic waste of livestock manure for Biomass-solid refuse fuel feasibility study of torrefied materials. Fallen leaves and sawdust added in torrefaction methods with livestock manure, that additives were used to improve the lower calorific value of livestock manure. During the torrefaction experiment, the reaction temperature was varied from $200^{\circ}C$ to $260^{\circ}C$ and $20^{\circ}C$ to prepare a sample. The reaction time was divided into 15, 30 and 45min to determine the effect of the experimental conditions on the torrified products. The additives were mixed at a ratio of 9:1 and 8:2 (Cow manure: additive) relative to the livestock manure. Through this experiment, it was obtained 3,500 kcal/kg standard product of solid fuel produced in Korea and improved product was obtained by adding additives.

Ammonia Reduction from Swine Manure Slurry with Additives of Brown Coal and Oak Charcoal (양돈분뇨의 암모니아 저감을 위한 갈탄, 참숯 첨가제의 효능 분석)

  • Hwang, H.S.;Oh, I.H.;Jang, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The odours from spreading the slurry, manure storage tanks, and the stall are a source of annoyance for the neighbors and sometimes even become a case for civil appeal. Reducing the odourant and ammonia emission is an urgent need to be addressed. It is known that brown coal and oak charcoal have an ability to absorb odour. We designed an experiment set in lab scale and used the brown coal and oak charcoal as additives in the test to reduce odour. The test are divided into two categories; namely aeration and no-aeration. The additives were added to the each sample at a concentration of 5% and 10% of total base solids, besides the control samples. We carried out the Phenate Method for ammonia analyzing. In the non-aerated case, the results showed a reducing efficiency of 23.7% and 26.4% with an addition rate of 5% and 10% of additives, respectively. In the aerated test, the reducing efficiency of ammonia was 17.8% and 21.0% with an addition rate of 5% and 10% of additives, respectively. In case of oak charcoal, non-aeration showed removal efficiencies of ammonia at 15.9% and 16.1% with addition rates of 5% and 10%, respectively, With aeration, they were 11.4% and 26.4% with addition rates of 5% and 10% oak charcoal, respectively. The tests show that brown coal and oak charcoal have a reducing effect on ammonia emissions.

  • PDF

Effects of Adding Oyster Shell Powder to Hanwoo Manure on its Quality and Microbial Composition - A Lab Study - (한우분에 굴 패각분말을 첨가 시 분의 특성과 미생물에 미치는 영향 -실험실 연구를 중심으로-)

  • Chang, Hong Hee;Joo, Young-Ho;Seo, Myeong-Ji;Kim, Ji-Yoon;Lee, Seong-Shin;Choi, Jeong-Seok;Jeong, Seung-Min;Noh, Hyeon-Tak;Kim, Sam-Churl
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.703-708
    • /
    • 2021
  • To improve the environmental management and resources, in this study, we aimed to investigate the effect of adding oyster shell powder to Hanwoo manure on its characteristics and microbial composition during the storage period. Additives were deposited on top of the manure surface at the rate of 0, 0.5, and 1% of oyster shell powder per 200 g of Hanwoo manure in a plastic container with three replicates; however, untreated manure litter served as the control. Manure characteristics (dry matter, organic matter and crude ash) and microbial composition (lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli) were evaluated at day 0, 2, 4, and 8. Manure characteristics exhibited an effect on dry matter, organic matter, and crude ash at day 2 and 8 (p<0.05), and not for day 0 and 4 (p>0.05). With the exception of yeast content at day 4 of storage, lactic acid bacteria, yeast, Bacillus subtilis, Salmonella, and E.coli exhibited no significant differences in all conditions during the storage period. Conclusively, addition of 1% oyster shell powder to Hanwoo manure resulted in slightly better manure characteristics; however, its microbial composition remained unchanged.

Optimizated pH and Mitigated Ammonia Emission in Pig Manure Slurry by Soluble Carbohydrate Supplementation (수용성 탄수화물을 이용한 분뇨슬러리 pH 적정화 및 암모니아 휘산의 저감)

  • Lim, Joung-Soo;Hwang, Ok-Hwa;Lee, Sang Ryong;Cho, Sung-Back;Kwag, Jung-Hoon;Lee, Dong-Hyun;Jung, Min Woong;Han, Deug-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • In Concentrated Animal Feeding Operations(CAFOs), emission of ammonia from stored manure contributes negatively on the wellness of livestock. In CAFOs facilities, indoor aerial ammonia concentration oftentime surpasses the critical level potentially harmful to livestock's immune system. Understandably, numerous researches to control aerial ammonia have been conducted in countries where CAFOs were practiced for many decades. Some innovative technologies, such as scrubber, bio-filter, and additives emerged, as a result. Among them, microbial additives became popular in Korea, due to an easiness of use and affordability. However, microbial additives still have some weaknesses. Their price is still high enough to discourage farmers who run a small scale farm and their effectiveness are still questioned by many users and researchers. In the present study, we found soluble carbohydrates, such as sugar, glucose, and molasses, when supplemented to pig slurry manure, can mitigate ammonia emission. To be more specific, pig manure slurry(120kg), stored in container(200L), was supplemented with sugar at 0.1%(w/w) and was, subsequently, monitored for pH and aerial ammonia for next 10 days. From this experiment, it was found that the sugar supplementation was effective in mitigating the aerial ammonia concentration (33% in average) when monitored daily. Also, the pH of manure slurry was maintained at relatively low level(8.2) in sugar-supplemented manure slurry while it was elevated to 8.5 in untreated slurry. Conclusively, the obtained data suggest that soluble carbohydrate can mitigate ammonia emission by acidifying manure slurry. Additionally, it can be suggested that soluble carbohydrates, such as sugar, glucose, and molasses, can be reasonable choices for animal farmers who have been looking for an alternative choice to replace expensive microbial additives.