• 제목/요약/키워드: Manufacturing pressure

검색결과 1,604건 처리시간 0.056초

정압 스러스트 베어링의 유체-구조물 사이의 상호작용에 관한 연구 (A Study on Fluid-Structure Interaction of a Hydrostatic Thrust Bearing)

  • 김병탁
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.92-98
    • /
    • 2006
  • In this study, the behavior characteristics of a hydrostatic thrust bearing used in hydraulic equipment was analyzed using a commercial finite element program, ADINA. The solid domain was modeled with the fluid domain simultaneously to solve the fully coupled problem, because this is a problem where a fully coupled analysis is needed in order to model the fluid-structure interaction(FSI). The results such as bearing deformation, stress, film thickness and lifting bearing force were obtained through FSI analysis, and then they were compared with the results calculated from the classical method, a single step sequential analysis. It was found that the result difference between two analyses was increased according to the injection pressure. Therefore, in case of high pressure loading, it is desirable to conduct the FSI analysis to examine the deformation characteristics of a hydrostatic slipper bearing.

  • PDF

랜딩기어 형상에 따른 공기 유동으로 인한 항공기 성능에 미치는 영향에 관한 연구 (A Study on the Effect Influencing on the Performance of Air Plane by the Air Flow due to Landing Gear Configuration)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.35-40
    • /
    • 2017
  • The aerodynamic performance of airplane is different according to the configuration of landing gear. As the drag becomes different according to this configuration, the flow stream of air must be smooth at taking off and landing. In this study, the configuration of landing gear was designed each in order to enhance the energy efficiency of airplane. Five models were compared in total at analysis. The magnitudes of drag and pressure became different and the air pressure of wake were changed due to the configuration. So, the air pressure due to the flow velocity and the air resistance happening at the rear can be estimated according to the configuration of landing gear. It is thought to improve the performance of airplane through the result of this study.

극지운항 선박용 루버 환기창 유동해석에 관한 연구 (A Study on the Flow Analysis of Ventilation Louver for Polar Ship)

  • 이중섭;진도훈
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.16-22
    • /
    • 2018
  • This study is about flow distribution in ventilation systems used in marine louvers. The flow analysis on a louver installed on the vent of a vessel results in the following conclusions: (a) as the velocity of the fluid entering the louver increases, the pressure drop increases; (b) as the pressure drop increases, it tends to increase following a quadratic function. The velocity was confirmed to decrease at the entrance of the louver. This indicates that as the pressure increases, the velocity decreases, and the velocity of the moving fluid is increasing as it passes through the louver vanes.

자동차 디퓨저의 형상에 따른 공기흐름의 해석 (Analysis of Airflow due to the Configuration of Automotive Diffuser)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.16-22
    • /
    • 2020
  • This study was aimed at analyzing the velocity and pressure changes in the airflow corresponding to different configurations of a diffuser for three types of cars. According to the flow results of the three automotive models, in model 3, the vortex was formed slightly upward on the outlet plane, whereas in models 1 and 2, the vortex was generated lower than that in model 3. The values of the pressure distribution in model 3 were larger than those for models 1 and 2 on the planes located at the same distance from the end of the rear part. The maximum turbulent kinetic energies in models 1 and 2 occurred at a location lower than that in model 3. The shape corresponding to the airflow that enhanced the driving performance was determined through the flow analysis.

체중 및 건강행태변화가 혈압 및 콜레스테롤에 미치는 영향 - 철강제조업체 근로자를 대상으로 한 3년 추구연구 - (Effects of change in Obestiy and Life Style Factors on Blood Pressure and Serum Cholesterol - 3-year Follow-up among Workers in a Steel Manufacturing Industry -)

  • 하명화;이송권;이덕희
    • Journal of Preventive Medicine and Public Health
    • /
    • 제32권3호
    • /
    • pp.415-420
    • /
    • 1999
  • Objectives: We investigated the effects of changes in obesity and life style factors, such as cigarette smoking, alcohol drinking, and exercise, on the changes in blood pressure and serum cholesterol among Korean men. Methods: This study included 7,205 healthy male employees in the steel manufacturing industry. Each subject underwent health examination in 1994 and was re-examined in 1997. The study subjects were classified into four categories, according to changes in body mass index (BMI) (loss; stable; mild gain: severe gain), cigarette smoking (quitter; nor-smoker; smoker continued; smoker started), alcohol drinking (quitter; non-drinker; drinker continued; drinker started) and exercise (more exercise; continuous regular exercise; continuous irregular or no exercise; less exercise), respectively. We evaluated the relationship between the categories of change in those independent variables and the changes in blood pressure and serum cholesterol, adjusted for BMI in 1994 and age by analysis of variance. Results: The change in systolic blood pressure was positively associated with the changes in BMI (p<0.001) and drinking (p=0,001), but negatively with smoking (p=0,004), compared to the first category of each independent variables. The systolic blood pressure was significantly less increased in the continuous smoking group than quitter or hon-smoker. The changes in diastolic blood pressure and serum cholesterol appeared to have statistically significant linear relationships only with the change in BMI. The change in exercise showed a marginal significance with diastolic blood pressure (p=0.088). Conclusions: These prospective data emphasize the importance of obesity as a determinant of the changes in blood pressure and serum cholesterol. In addition, the changes in smoking and drinking habits can affect systolic blood pressure.

  • PDF

축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가 (Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks)

  • 임은모;허남수;최신범;유제용;김지호;최순
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

Comparison of Injection Molding Characteristics according to Thickness Variations of Preform for PET bottle

  • Kim, Nam Hyun;Woo, In Young;Nam, Kyung Woo;Yeon, Baek Rim;Kim, Mi Rae;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제56권3호
    • /
    • pp.164-171
    • /
    • 2021
  • Due to the problem of environmental pollution by plastics, it is necessary to decrease their consumption. In the case of PET bottles, it is essential to reduce the thickness of the bottle for the reduction of plastic used. For manufacturing PET bottles with reduced thickness, it is a prerequisite to design a preform with reduced thickness and study its molding capability. In this study, the injection molding capability was investigated after reducing the body thickness of the preform to 15% and 20%, respectively, for the two preform models currently in use. Injection molding analysis was performed on the existing models and on the models for reduced weight, under the molding conditions of the existing models. Using the computed results, temperature distribution, pressure distribution, deformation and clamping force were compared. Based on the analysis, the injection conditions of the preform model with less thickness were discussed.

스테인리스강 316L 재질의 PBF 및 DED 방식 금속 3D프린팅 시편 인장 시험 결과 (Tensile Test Results for Metal 3D Printed Specimens of Stainless Steel 316L Manufactured by PBF and DED)

  • 장경남;양승한
    • 한국압력기기공학회 논문집
    • /
    • 제19권1호
    • /
    • pp.11-19
    • /
    • 2023
  • Additive manufacturing technology, called as 3D printing, is one of fourth industrial revolution technologies that can drive innovation in the manufacturing process, and thus should be applied to nuclear industry for various purposes according to the manufacturing trend change in the future. In this paper, we performed tensile tests of 3D printed stainless steel 316L as-built specimens manufactured by two types of technology; DED (Directed Energy Deposition) and PBF (Powder Bed Fusion). Their mechanical properties (tensile strength, yield strength, elongation and reduction of area) were compared. As a result of comparison, the mechanical properties of the PBF specimens were slightly better than those of DED specimens. In the same additive type of specimens, the tensile and yield strength of specimens in the X and Y direction were higher than those in the Z direction, but the elongation and ROA were lower.

The Influence of Pressure, Temperature, and Addition of CO2 on the Explosion Risk of Propylene used in Industrial Processes

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.610-617
    • /
    • 2020
  • In process installations, chemicals operate at high temperature and high pressure. Propylene is used as a basic raw material for manufacturing synthetic materials in the petrochemical industry; However, it is a flammable substance and explosive in the gaseous state. Thus, caution is needed when handling propylene. To prevent explosions, an inert gas, carbon dioxide, was used and the changes in the extent of explosion due to changes in pressure and oxygen concentration at 25 ℃, 100 ℃, and 200 ℃ were measured. At constant temperature, the increase in explosive pressure and the rates of the explosive pressure were observed to rise as the pressure was augmented. Moreover, as the oxygen concentration decreased, the maximum explosive pressure decreased. At 25 ℃ and oxygen concentration of 21%, as the pressure increased from 1.0 barg to 2.5 bar, the gas deflagration index (Kg) increased significantly from 4.71 barg·m/s to 18.83 barg·m/s.