• Title/Summary/Keyword: Manufacturing Yield

Search Result 501, Processing Time 0.026 seconds

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.

Recovery of Gallium from GaAs Scraps by Thermal Decomposition (GaAs Scrap으로부터 熱分解法에 의한 갈륨 回收)

  • Choi, Young-Yoon;Nam, Chul-Woo;Yu, Yeon-Tae;Kim, Wan-Young
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.28-32
    • /
    • 2005
  • By using thermal decomposition method, the preliminary experiments for recovery of metallic Ga from GaAs scraps produced in the manufacturing of compound semiconductors were carried out in laboratory(200 g/batch) scales. From these results, decomposition appratus with packed tower was constructed in commercial scale(30 kg/batch). The decomposition rate of GaAs increased with raising decomposition temperature, but the yield of Ga decreased over 1000$^{\circ}C. As a result, the optimum decomposition temperature was 1000~1050$^{\circ}C when the pressure of decomposition reactor was 2~2.5${\times}10^{-2} mmHg, and the yield of Ga was about 89 wt.%. The commercial decomposition apparatus was designed with packed tower because the partial pressure of As in vapor state was not reduced even if the temperature of As vapor was decreased. The recovery yield of Ga from GaAs scraps in large scale experiment showed 99%.

In-site Processing and Mechanical Properties of Ti/TiB Composites (반응생성에 의한 Ti/TiB 복합재료의 제조와 기계적 성질)

  • Jeong, Hui-Won;Lee, Yong-Tae
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.307-314
    • /
    • 1999
  • The effect of manufacturing variables, such as reactant powder$(TiB_2, B_4C)$, sintering temperature, and sintering time has been investigated on the microstructure and the mechanical properties of in-situ processed Ti/TiB composites. The mechanical properties were evaluated by measuring the compressive yield strength. The compressive yield strength of the in-situ processed composites was higher than that of the Ti-6AI-4V. The compressive yield strength of the composite made with TiE, reactant powder was higher than that of $B_4C$, mixed at the same volume fraction of reinforcement. It is because bonding nature between the matrix and the $TiB_2$, reactant powder was more strong than that of the other materials. It was proven by the examining the crack propagation path.

  • PDF

Effect of Sr Addition on Mechanical and Corrosion Properties of Mg-Zn-Ca Alloy for Biodegradable Implant Material (생체 분해성 임플란트용 Mg-Zn-Ca 합금의 기계적 및 부식특성에 미치는 Sr 첨가의 영향)

  • Kong, Bo-Kwan;Cho, Dae-Hyun;Yun, Pil-Hwan;Lee, Jeong-Hun;Park, Jin-Young;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.155-162
    • /
    • 2015
  • The effect of Sr addition on mechanical and bio-corrosion properties of as-cast Mg-3wt.%Zn-0.5wt.%Ca-xwt.%Sr (x = 0.3, 0.6, 0.9) alloys were examined for application as biodegradable implant material. The microstructure, mechanical properties and corrosion resistance of the as-cast Mg-Zn-Ca-Sr alloys were characterized by using optical microscopy, scanning electron microscopy, tensile testing and electrochemical measurement in Hank's solution. The as-cast alloys contained ${\alpha}$-Mg and eutectic $Ca_2Mg_6Zn_3$ phases, while the alloys contained ${\alpha}$-Mg, $Ca_2Mg_6Zn_3$ and Mg-Zn-Ca-Sr intermetallic compound when the Sr addition was more than 0.3 wt.%. The yield strength, ultimate tensile strength and elongation increased with the increasing of Sr content up to 0.6 wt.% but decreased in the 0.9 wt.% Sr-added alloy, whereas the corrosion resistance of 0.3 wt.% Sr-added alloy was superior to other alloys. It was thought that profuse Mg-Zn-Ca-Sr intermetallic compound deteriorated both the mechanical properties and corrosion resistance of the as-cast alloy.

Development of Automative Program for Designing Involute Spur Gear (인볼류트 스퍼기어 설계용 자동화 프로그램 개발)

  • So, Jung-Duk;Jung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik;Kim, Jongsoon;Kwon, Soon-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.142-151
    • /
    • 2013
  • This study develops an automation system for metallic mold design that is applicable in forging non-axial symmetric parts. The metallic mold design program is used to design the metallic mold using two-dimensional axial symmetric metallic molds and to predict the stress concentration using finite element analyses. Then, the program redesigns the metallic mold using variables such as the optimal split diameter, maximum allowable inner pressure, fit tolerance, and stress distribution, which are calculated using the metallic mold design program. When the involute spur gear is forged, stress concentration occurs on the tooth root bounded at the symmetric surface. The SCM4 material is suitable for metallic molds because the stress is less than the yield strength of the insert and it acts on the tooth root regardless of the inner pressure. The metallic mold for forging non-axial symmetric parts can be designed through adjusting the magnitude of the contact pressure. The program developed in this study can be applied to metallic mold designs in involute spur gears of forging, which is an ordinary non-axial symmetric part.

The Regulatory Effectiveness for Appointing Safety and Health Management Officers for Small Manufacturing Companies (소규모 제조업 사업장에서의 안전보건관리담당자 제도 실효성 검증)

  • Kim, Jang-Hoon;Kwon, Min-Sung;Shin, Jong-Gyu;Kim, Sang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.2
    • /
    • pp.17-24
    • /
    • 2022
  • It was legislated in Korea that the small-sized enterprise with fewer than 50 employees should appoint at least one managing officer in order to improve safety and health of the employees since 2016. Study on the effectiveness of this legislation is hardly found, however. This study tried to evaluate effectiveness of the regulations for appointing the safety and health management officer in small-sized manufacturing companies and make suggestions to improve it. It was done by pairwise comparison between the level of safety and health achievement of 52 companies before and after the legislation. A scorecard system and questionnaires were devised for assessing the level of safety and health achievement and surveying awareness and practice of the regulation in the field. Results from quantitative and qualitative analyses performed in the study confirm that the safety and health achievement score has increased significantly after appointing the managing officer. It is also revealed that the lack of expertise and motivation of the appointed officer would yield pointless outcomes. Recommendations to make it better the effectiveness of the regulation are: to administrate requirements more strictly to be appointed as a safety and health management officer, to revise the curriculum to train the expertise of the appointed officers, and to expand financial support of the government to settle the safety and health management system.

Effect of barium silicate filler content on mechanical properties of resin nanoceramics for additive manufacturing

  • Won, Sun;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra;Huh, Yoon-Hyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.315-323
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate the effect of barium silicate filler contents on mechanical properties of resin nanoceramics (RNCs) for additive manufacturing (AM). MATERIALS AND METHODS. Additively manufactured RNC specimens were divided into 4 groups depending on the content of ceramic fillers and polymers: 0% barium silicate and 100% polymer (B0/P10, control group); 50% barium silicate and 50% polymer (B5/P5); 60% barium silicate and 40% polymer (B6/P4); 67% barium silicate and 33% polymer (B6.7/P3.3). The compressive strength (n = 15) and fracture toughness (n = 12) of the specimens were measured, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analyses were performed. Independent sample Kruskal-Wallis tests were performed on the compressive strength and fracture toughness test results, and the significance of each group was analyzed at the 95% confidence interval through post-tests using the Bonferroni's method. RESULTS. B6/P4 and B6.7/P3.3 exhibited much higher yield strength than B0/P10 and B5/P5 (P < .05). Compared to the control group (B0/P10), the other three groups exhibited higher ultimate strength (P < .05). The fracture toughness of B6/P4 and B6.7/P3.3 were similar (P > .05). The content of barium silicate and fracture toughness showed a positive correlation coefficient (R = 0.582). SEM and EDS analyses revealed the presence of an oval-shaped ceramic aggregate in B6/P4 specimens, whereas the ceramic filler and polymer substrate were homogeneously mixed in B6.7/P3.3. CONCLUSION. Increasing the ceramic filler content improves the mechanical properties, but it can be accompanied by a decrease in the flowability and the homogeneity of the slurry.

Investigation of the Influence of Radius and Corner Position on the Residual Stress Distribution in the Vicinity of the Repaired Region via Directed Energy Deposition by using Finite Element Analysis (유한 요소 해석을 이용한 DED 공정의 코너 반경 및 위치에 따른 보수 영역 부근 잔류응력 분포 영향성 조사)

  • Alissultan, Aliyev;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.33-40
    • /
    • 2021
  • Current industrial flow is directed toward reducing the usage of raw materials by reusing parts, which is referred to as a circular economy (CE). Repair is one of the most value-added approaches in CE, which can be efficiently accomplished via additive manufacturing. The repair technology of metallic parts via the directed energy deposition process, which includes the selective removal and redeposition of damaged regions of metallic parts. Residual stress characteristics depend on the shape of the part and the shape of the redeposition region. The objective of this study is to investigate the effects of the radius and corner position of the substrate on the residual stresses for repair by using finite element analysis (FEA). The residual stress distribution of the 45° angle groove at the edge of the circular shape models on the outer and inner radii was analytically investigated. The analysis was accomplished using SYSWELD software by applying a moving heat source with defined material properties and cooling conditions integrated into the FEA model. The results showed a similar pattern of concentrated stress distribution for all models except the 40-mm and 60-mm radii, for which the maximum stress locations were different. The maximum residual stresses are high but lower than the yield strength, suggesting the absence of cracks and fractures due to residual stresses.

Manufacturing of Extinguishing Powder of Expanded Glass from Recycling Automotive Glass Powder (자동차 폐유리 분말을 이용한 팽창유리 소화약제의 제조)

  • Duk-Woo, Jeon;Jung-Ho, Park;Yong-Kwon, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.547-552
    • /
    • 2022
  • In this study, we secured a technology for manufacturing expanded glass of uniform quality by using general tempered glass, that is, window glass, among automotive glass that is scrapped, and verified whether the manufactured expanded glass can be used for lithium battery fire suppression. The process of manufacturing expanded glass using waste glass is generally divided into Crushing → Milling → Granulation → Expansion → Cooling. With several trials a nd errors. It is obtained a yield of 0.5 ø mm to 2 ø mm spherical particles of 80 % or more. By comparing the surface analysis and physical properties, a more suitable sample was selected as a fire extinguishing agent for lithium batteries, and it was confirmed that the result of the adaptability test for lithium battery fire was satisfactory.