• 제목/요약/키워드: Manufacturing Variation

검색결과 735건 처리시간 0.026초

제조기업 간 협업프로세스 실행 기술 (Execution Technology for Collaborative Business Process among Manufacturing Enterprises)

  • 김현우;김보현;백재용;정소영;최헌종
    • 한국CDE학회논문집
    • /
    • 제15권3호
    • /
    • pp.204-211
    • /
    • 2010
  • Recently, business process management has become an important concept to define and execute business process. During the execution of the collaborative business processes defined by the consensus with manufacturing enterprises, a lot of variations can be occurred by various internal and external factors related to business. From this reason, manufacturing enterprises have tried to seek for a technology to define and execute the collaborative business process systematically under the dynamic situations approving process variation. This study defines the collaborative business process among manufacturing enterprises at first and proposes its execution technology under the dynamic situations. Here, the proposed execution technology includes the authority management of each process, sub-process, and activity for security, the forced execution of the incomplete process containing the undefined sub-process, the re-execution in a certain range of business process for correcting errors, and the dynamic selection of sub-process. Furthermore, this study implements a prototype system to check the validity of its application under the dynamic situations.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • 제52권3호
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations

  • She, Gui-Lin;Ren, Yi-Ru;Xiao, Wan-Shen;Liu, Haibo
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.729-736
    • /
    • 2018
  • This paper studies thermal buckling and post-buckling behaviors of functionally graded materials (FGM) tubes subjected to a uniform temperature rise and resting on elastic foundations via a refined beam model. Compared to the Timoshenko beam theory, the number of unknowns of this model are the same and no correction factors are required. The material properties of the FGM tube vary continuously in the radial direction according to a power function. Two ends of the tube are assumed to be simply supported and in-plane boundary conditions are immovable. Energy variation principle is employed to establish the governing equations. A two-step perturbation method is adopted to determine the critical thermal buckling loads and post-buckling paths of the tubes with arbitrary radial non-homogeneity. Through detailed parametric studies, it can be found that the tube has much higher buckling temperature and post-buckling strength when it is supported by an elastic foundation.

자가보정법을 이용한 정밀 스테이지의 직각도 보정 (Orthogonality Calibration of a High Precision Stage using Self-calibration Method)

  • 김기현;박상현;김동민;장상돈
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.50-57
    • /
    • 2010
  • A high precision air bearing stage has been developed and calibrated. This linear-motor driven stage was designed to transport a glass or wafer with the X and Y following errors in nanometer regime. To achieve this level of precision, bar type mirrors were adopted for real time ${\Delta}X$ and ${\Delta}Y$ laser measurement and feedback control. With the laser wavelength variation and instability being kept minimized through strict environment control, the orthogonality of this type of control system becomes purely dependent upon the surface flatness, distortion, and assembly of the bar mirrors. Compensations for the bar mirror distortions and assembly have been performed using the self-calibration method. As a result, the orthogonality error of the stage was successfully decreased from $0.04^{\circ}$ to 2.48 arcsec.

신경망을 이용한 동적 수율 개선 모형 (Dynamic Yield Improvement Model Using Neural Networks)

  • 정현철;강창욱;강해운
    • 산업경영시스템학회지
    • /
    • 제32권2호
    • /
    • pp.132-139
    • /
    • 2009
  • Yield is a very important measure that can expresses simply for productivity and performance of company. So, yield is used widely in many industries nowadays. With the development of the information technology and online based real-time process monitoring technology, many industries operate the production lines that are developed into automation system. In these production lines, the product structures are very complexity and variety. So, there are many multi-variate processes that need to be monitored with many quality characteristics and associated process variables at the same time. These situations have made it possible to obtain super-large manufacturing process data sets. However, there are many difficulties with finding the cause of process variation or useful information in the high capacity database. In order to solve this problem, neural networks technique is a favorite technique that predicts the yield of process for process control. This paper uses a neural networks technique for improvement and maintenance of yield in manufacturing process. The purpose of this paper is to model the prediction of a sub process that has much effect to improve yields in total manufacturing process and the prediction of adjustment values of this sub process. These informations feedback into the process and the process is adjusted. Also, we show that the proposed model is useful to the manufacturing process through the case study.

실리콘 웨이퍼 연삭가공 특성 평가에 관한 연구 (Study on Characteristics of Ground Surface in Silicon Wafer Grinding)

  • 이상직;정해도;이은상;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.128-133
    • /
    • 1999
  • In recent years, LSI devices have become more powerful and lower-priced, caused by a development of various wafer materials and an increase in the diameter of wafers. On the other hand, these have created some serious problems in manufacturing of wafers because materials used as semiconductor substrate are very brittle. In view of this fact, there are some trials to apply shear-mode(or ductile-mode) grinding for efficient manufacturing of semiconductor wafers instead of conventional lapping process. In fact grinding process that has not only more excellent degree of accuracy but also more adaptable to fully automated manufacturing than lapping, is already used in Si machining field. This paper described the elementary studies to establish the grinding technology of wafers. First, we investigated the variation of grinding force and the transition of grinding mode as various grinding conditions. Then, it was inspected that the change of grinding force affected the integrity such as the topography and the roughness of ground surfaces, and led to the chemical defects generation and distribution in damaged layer. The degree of defects was estimated by FT-IR(Fourier Transformed Infrared) Spectroscopy and Auger Electron Spectroscopy

  • PDF

레이저 직접 용융 시 금속분말의 함량조정을 통한 경사물성 부여 (Functionally Graded Properties Induced by Direct Laser Melting of Compositionally Selected Metallic Powders)

  • 한상욱;지원종;이철환;문영훈
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.303-310
    • /
    • 2014
  • Functionally graded properties are characterized by the gradual variation in composition and structure through the volume of the material, resulting in corresponding gradation in properties of the material. Direct laser melting (DLM) is a prototyping process whereby a 3-D part is built layer-wise by melting metal powder with laser scanning. Studies have been performed on the functionally graded properties induced by direct laser melting of compositionally selected metallic powders. For the current study, quadrangle structures were fabricated by DLM using Fe-Ni-Cr powders having variable compositions. Hardness and EDX analysis were conducted on cross-sections of the fabricated structure to characterize the properties. From the analysis, it is shown that functionally graded properties can be successfully obtained by DLM of selected metallic powders with varying compositions.

1.3 μm 광통신용 소자를 위한 InAs 양자점 성장 및 파장조절기술 개발 (Development of the Growth and Wavelength Control Technique of In As Quantum Dots for 1.3 μm Optical Communication Devices)

  • 박호진;김도엽;김군식;김종호;류혁현;전민현;임재영
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.390-395
    • /
    • 2007
  • We systematically investigated the effects of InAs coverage variation, two-step annealing and an asymmetric InGaAs quantum well (QW) on the structural and optical characteristics of InAs quantum dots (QDs) by using atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence (PL) measurement. The transition of size distribution of InAs QDs from bimodal to multi-modal was noticeably observed with increasing InAs coverage. By means of two-step annealing, it is found that significant narrowing of the luminescence linewidth (from 132 to 31 meV) from the InAs QDs occurs together with about 150 meV blueshift, compared to as-grown InAs QDs. Finally, the InAs QDs emitting at longer wavelength of $1.3\;{\mu}m$ with narrow linewidth were grown by an asymmetric InGaAs QW. The excited-state transition for the InAs QDs with an asymmetric InGaAs QW was not noticeably observed due to the large energy-level spacing between the ground states and the first excited states. The InAs QDs with an asymmetric InGaAs QW will be promising for the device applications such as $1.3\;{\mu}m$ optical-fiber communication.

마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구 (A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns)

  • 이동원;김종수;이현화;이성희
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

A Study on the Ultrasonic Nondestructive Evaluation of Carbon/Carbon Composite Disks

  • Im, Kwang-Hee;Jeong, Hyun-Jo;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.320-330
    • /
    • 2000
  • It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mm ad, 135mm id) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CYI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CYI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near the id and od and by the less efficient densification away from the exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers ; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.

  • PDF