• Title/Summary/Keyword: Manufacturing Processes

Search Result 2,426, Processing Time 0.033 seconds

Fabricating retrofit crowns to an existing removable partial denture by CAD-CAM: a case report (CAD-CAM을 이용한 RPD 지대치의 retrofit crown 제작 증례)

  • Hyuksoon Lee;Seong-A Kim;Joo-Hyuk Bang;Sung Yong Kim;Hee-Won Jang;Keun-Woo Lee;Yong-Sang Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • Removable partial denture wearers are exposed to the risks that remaining teeth get damaged by caries, attritions, erosion, and fracture. In the case of damaged abutment tooth which should fit to Removable partial denture (RPD), the fabrication of surveyed crown is followed by the making of RPD. However, making new denture takes a long time, and needs several processes and costs. Also, patients should get used to new denture. If other abutment teeth and edentulous ridges provide the existing denture with support, retention, and stability, use of existing denture is considered clinically acceptable. In this situation, fabricating retrofit crowns to an existing removable partial denture makes patient use existing denture, cuts costs, and reduces discomfort. In this case, severely worn teeth were restored using monolithic zirconia crown which fit to an existing removable partial denture by CAD-CAM. Moreover, support, retention, and stability of the denture were improved, and both doctor and patient were satisfied with the result.

Determine the hazards of radioactive elements and radon gas manufacturing processes in an Egyptian fertilizer factory

  • Soad Saad Fares
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1781-1795
    • /
    • 2024
  • This study investigated the levels of radioactivity in soil surrounding a phosphate fertilizer factory in Egypt, aiming to assess potential risks to the population exposed to radiation. Concentrations of 238U, 226Ra, 232Th, and 40K were measured in soil samples collected from two subsites: one near the factory (subsite 1) and another further away (subsite 2). Two different systems were used for measuring radioactivity, a high-purity gamma ray spectroscopy system with an HPGe detector for gamma-emitting isotopes and a CR-39 solid nuclear track detector for alpha-emitting radon gas. Subsite 1, located close to the factory, displayed significantly elevated levels of 226Ra compared to global background levels (514 and 456 Bq/kg vs. 35 Bq/kg). Additionally, the concentrations of 238U (241.06 Bq/kg vs. global average 35 Bq/kg), 232Th (16.15 Bq/kg vs. global average 30 Bq/kg), and 40K (146.36 Bq/kg vs. global average 400 Bq/kg) were all above global averages. Furthermore, a high concentration of radon gas (337.06 μSv/y) was measured at subsite 1. The strong positive correlation observed between 226Ra and 238U (0.96256) provides further evidence of potentially elevated radioactivity levels near the factory. In contrast, subsite 2, situated farther from the factory, exhibited natural radioactive background levels within international limits. Quantitative analysis revealed that gamma ray absorbed doses for 226Ra and 232Th exceeded global averages in some samples. Specifically, 226Ra doses ranged from 7.8 to 46.26 ppm (exceeding the 20 ppm global average in some cases), and 232Th doses ranged from 1.98 to 9.14 ppm (exceeding the 10 ppm global average in some cases). The concentration of 40K, however, remained within the global range (0.07%-0.69 %). The observed imbalances in the ratios of Th/U (0.17-0.24 Bq/kg and 0.73-0.24 ppm) and U/Ra (0.81-0.73 Bq/kg and 0.73-0.17 ppm), both of which are significantly lower than their respective global averages of 4 and 2.4, point towards the presence of fertilizer-derived contamination. This conclusion is further supported by the high phosphate concentrations detected in the samples. Overall, this study suggests that radioactive contamination near the phosphate fertilizer factory significantly exceeds global background levels and international limits in some cases. This raises concerns about potential risks posed to surrounding agricultural land and crops.

Process development of a virally-safe dental xenograft material from porcine bones (바이러스 안전성이 보증된 돼지유래 골 이식재 제조 공정 개발)

  • Kim, Dong-Myong;Kang, Ho-Chang;Cha, Hyung-Joon;Bae, Jung Eun;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.140-147
    • /
    • 2016
  • A process for manufacturing virally-safe porcine bone hydroxyapatite (HA) has been developed to serve as advanced xenograft material for dental applications. Porcine bone pieces were defatted with successive treatments of 30% hydrogen peroxide and 80% ethyl alcohol. The defatted porcine bone pieces were heat-treated in an oxygen atmosphere box furnace at $1,300^{\circ}C$ to remove collagen and organic compounds. The bone pieces were ground with a grinder and then the bone powder was sterilized by gamma irradiation. Morphological characteristics such as SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images of the resulting porcine bone HA (THE Graft$^{(R)}$) were similar to those of a commercial bovine bone HA (Bio-Oss$^{(R)}$). In order to evaluate the efficacy of $1,300^{\circ}C$ heat treatment and gamma irradiation at a dose of 25 kGy for the inactivation of porcine viruses during the manufacture of porcine bone HA, a variety of experimental porcine viruses including transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), and porcine parvovirus (PPV) were chosen. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the $1,300^{\circ}C$ heat treatment. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.81$$ for PRV, $${\geq_-}6.28$$ for PRoV, and $${\geq_-}5.21$$ for PPV. Gamma irradiation was also very effective at inactivating the viruses. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the gamma irradiation. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.87$$ for PRV, $${\geq_-}6.05$$ for PRoV, and $${\geq_-}4.89$$ for PPV. The cumulative log reduction factors achieved using the two different virus inactivation processes were $${\geq_-}9.30$$ for TGEV, $${\geq_-}11.68$$ for PRV, $${\geq_-}12.33$$ for PRoV, and $${\geq_-}10.10$$ for PPV. These results indicate that the manufacturing process for porcine bone HA from porcine-bone material has sufficient virus-reducing capacity to achieve a high margin of virus safety.

Virus Inactivation Processes for the Manufacture of Human Acellular Dermal Matrix (인체이식용 무세포 진피 제조를 위한 바이러스 불활화 공정)

  • Bae, Jung-Eun;Kim, Jin-Young;Ahn, Jae-Hyoung;Choi, Da-Mi;Jeong, Hyo-Sun;Lee, Dong-Hyuck;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.168-176
    • /
    • 2010
  • Acellular dermal matrix (ADM), produced by decellularization from human cadaveric skin, has been used for various biomedical applications. A manufacturing process for ADM ($SureDerm^{TM}$) using tri-n-butyl phospahate (TnBP) and deoxycholic acids as the decellularization solution has been developed. The manufacturing process for $SureDerm^{TM}$ has 70% ethanol treatment and ethylene oxide gas sterilization for inactivating infectious microorganisms. The purpose of this study was to examine the efficacy of the 70% ethanol treatment, decellularization process using 0.1% TnBP and 2% deoxycholic acids, and EO gas sterilization process in the inactivation of viruses. A variety of experimental model viruses for human pathogens, including the human immunodeficiency virus type 1 (HIV-1), bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), hepatitis A virus (HAV), and porcine parvovirus (PPV) were all selected for this study. Enveloped viruses such as HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by 70% ethanol treatment. However HAV and PPV showed high resistance to 70% ethanol treatment with the log reduction factors of 1.85 and 1.15, respectively. HIV-1, BHV, and BVDV were effectively inactivated to undetectable levels by decellularization process. All the viruses tested were completely inactivated to undetectable levels by EO gas treatment. The cumulative log reduction factors of HIV-1, BHV, BVDV, HAV, and PPV were $\geq12.71$, $\geq18.08$, $\geq14.92$, $\geq6.57$, and $\geq7.18$, respectively. These results indicate that the production process for $SureDerm^{TM}$ has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

Next Generation Lightweight Structural Composite Materials for Future Mobility Review: Applicability of Self-Reinforced Composites (미래모빌리티를 위한 차세대 경량구조복합재료 검토: 자기강화복합재료의 적용 가능성)

  • Mi Na Kim;Ji-un Jang;Hyeseong Lee;Myung Jun Oh;Seong Yun Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Demand for energy consumption reduction is increasing according to the development expectations of future mobility. Lightweight structural materials are known as a method to reduce greenhouse gas emissions and improve energy efficiency. In particular, fiber reinforced polymer composite (FRP) is attracting attention as a material that can replace existing metal alloys due to its excellent mechanical properties and light weight. In this paper, industrial applications and research trends of carbon fiber reinforced composites (CFRP, carbon FRP) and self-reinforced composites (SRC) were reviewed based on the reinforcement, polymer matrix, and manufacturing process. In order to overcome the expensive process cost and long manufacturing time of the epoxy resin-based autoclave method, which is mainly used in the aircraft field, mass production of CFRP-applied electric vehicles has been reported using a high-pressure resin transfer molding process including fast-curing epoxy. In addition, thermoplastic resin-based CFRP and interface enhancement methods to solve the recycling issue of carbon fiber composites were reviewed in terms of materials and processes. To form a perfect matrix-reinforcement interface, which is known as the major factor inducing the excellent mechanical properties of FRP, studies on SRC impregnated with the same matrix in polymer fibers have been reported. The physical and mechanical properties of SRC based on various thermoplastic polymers were reviewed in terms of polymer orientation and composite structure. In addition, a copolymer matrix strategy for extending the processing window of highly drawn polypropylene fiber-based SRC was discussed. The application of CFRP and SRC as lightweight structural materials can provide potential options for improving the energy efficiency of future mobility.

A Study on the Product Design Process in I-Business Environment Focusing on Development of the Internet-based Design Process - (e-비지니스환경에서의 제품디자인 프로세스에 관한 기초연구-인터넷기반의 디자인 프로세스 개발을 중심으로-)

  • 이수봉;이돈희
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.181-198
    • /
    • 2003
  • The purpose of this study is to develop a on-line design tool for effectively coping with e-Business environment, or product design process into a Cyber model for traditional manufacturers which attempts new product development under such environment. It was finally developed as a model named $\ulcorner$Design Vortal Site; e-BVDS) that was based on the structure and style of internet web site. Results of the study can be described as follows ; \circled1 e-Business is based on the Internet. All processes in the context of e-Business require models whose structure and method of use are on-line styles. \circled2 In case that a traditional manufacturing business is converted into e-Business, it is better to first consider Hybrid Model that combines resources and advantages of both such traditional and digital businesses. \circled3 The product design process appropriate for e-Business environment has to have a structure and style that ensure utilization of the process as an Internet web site, active participation by product developers and interactive communication between participants in designing and designers. \circled4 $\ulcorner$e-BDVS) makes possible the use of designers around the wend like in-house designers, overcoming lack in creativity, ideas and human resources traditional business organizations face. However, the operation of $\ulcorner$e-BDVS$\lrcorner$ requires time and budget investments in securing related elements and conditions. \circled5 Cyber designers under $\ulcorner$e-BDVS$\lrcorner$ can easily perform all design projects in cyber space. But they have some limits in playing a role as designers and they have difficulty in getting rewards if such projects completed by them are not finally accepted. \circled6 $\ulcorner$e-BDVS) ensures the rapid use of a wide range of design information and data, reception of a variety of solutions and ideas and effective design development, all of which are not possible through traditional processes. However, this process may not be suitable to be used routine process or tool. \circled7 $\ulcorner$e-BDVS$\lrcorner$ makes it possible for out-sourcing or partners businesses to overcome restrictions in time and space and improve productivity and effectiveness. But such they may have to continue off-line works that can not be treated on-line.

  • PDF

Microbial Qualities of Parasites and Foodborne Pathogens in Ready to Eat (RTE) Fresh-cut Produces at the On/Offline Markets (즉석섭취 신선편의 절단 과일 및 채소의 원충류 및 병원성 식중독균의 미생물학적 품질 실태 연구)

  • Jeon, Ji Hye;Roh, Jun Hye;Lee, Chae Lim;Kim, Geun Hyang;Lee, Jeong Yeon;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • Recently, the purchase of fresh-cut produce and meal kits has increased. Ready-to-eat (RTE) fresh-cut products have potentially hazard of cross-contamination of various microorganisms in the processes of peeling, slicing, dicing, and shredding. There are frequent cases of protozoa food poisoning, such as Cyclospora and Cryptosporidium, caused by fresh-cut products. The objective of the study is to investigate the microbiological qualities of various types of RTE fresh-cut products in the domestic on/offline markets. RTE fresh-cut fruits cup (n=100), fresh-cut vegetables (n=50), and vegetables in meal kits (Vietnamese spring rolls and white radish rolls kits, n=50) were seasonally analyzed. The contamination levels of hygienic indicator organisms, yeast and mold (YM), and foodborne pathogens (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7) were monitored. Overall, the lowest microbiological qualities of meal kits vegetables were observed, followed by RTE fresh-cut fruits cup and fresh-cut vegetables. Contamination levels of total aerobic bacteria, coliforms, and YM in meal kits vegetables were 5.91, 3.90, and 4.71 logs CFU/g, respectively. From the qualitative analysis, 6 out of 200 RTE fresh-cut products (3%) returned positive result for S. aureus. From the quantitative analysis, the contamination levels of S. aureus in purple cabbage from a meal-kit and fresh-cut pineapple were below the acceptable limit (100 CFU/g). Staphylococcus enterotoxin seg and sei genes were detected in RTE fresh-cut celery and red cabbage from meal-kits, respectively. S. aureus contamination must be carefully controlled during the manufacturing processes of RTE fresh-cut products. Neither Cyclospora cayetanensis nor Cryptosporidium parvum was detected in the samples of RTE fresh-cut products and vegetables from meal-kits from the Korean retail markets.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Characteristics of Samhaeju Made by Various Processing Methods Originating from Ancient Documents (고문헌 유래 삼해주의 제조방법에 따른 품질특성)

  • Park, Ji-Hye;Yeo, Soo-Hwan;Jeong, Seok-Tae;Won, Myong-Ha;Choi, Ji-Ho
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.6
    • /
    • pp.853-862
    • /
    • 2011
  • We reproduced and investigated the quality characteristics of Samhaeju (one type of Korean traditional rice wine), which has been described in ancient documents. During fermentation, the room temperature was $9.1{\sim}25.0{\circ}C$, and each treatment's material temperature was $11.7{\sim}23^{\circ}C$. As the fermentation proceeded, the pH rapidly decreased (initial pH was 6.6~6.9) and rose gradually from the 18th day. Titratable acidity and amino acidity slowly increased in general. Regarding soluble solid contents, there were various change patterns depending on the production method, and they were affected by initial room temperature. In the treatments using 1 (Sang-ga-yo-rok), 3 (Eum-sik-di-mi-bang), 7 (Jo-sun-mu-ssang-sin-sik-yo-ri-je-beop), 8 (Sang-ga-yo-rok $15^{\circ}C$), reducing sugar contents decreased rapidly after 1st mashing day and then increased slightly after 2nd mashing. The alcohol content increased as the fermentation proceeded, and most of the treatments produced 1/2 the amount of total alcohol content before the 2nd mashing day, followed by a slight increase until the end of fermentation (about 100 days from the 2nd mashing day). In the sensory evaluation, Samhaeju using methods 2, 4, 5, and 6 got high scores and had much reducing sugar contents than other treatments. Among the seven manufacturing processes, method 2 was relatively simple and got the highest score in the sensory evaluation. Therefore, method 2 would be suitable for industrialization and popularization of Korean traditional alcoholic beverage.