• Title/Summary/Keyword: Manufacturing Process Analysis

Search Result 3,433, Processing Time 0.032 seconds

An Empirical Study on Manufacturing Process Mining of Smart Factory (스마트 팩토리의 제조 프로세스 마이닝에 관한 실증 연구)

  • Taesung, Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • Manufacturing process mining performs various data analyzes of performance on event logs that record production. That is, it analyzes the event log data accumulated in the information system and extracts useful information necessary for business execution. Process data analysis by process mining analyzes actual data extracted from manufacturing execution systems (MES) to enable accurate manufacturing process analysis. In order to continuously manage and improve manufacturing and manufacturing processes, there is a need to structure, monitor and analyze the processes, but there is a lack of suitable technology to use. The purpose of this research is to propose a manufacturing process analysis method using process mining and to establish a manufacturing process mining system by analyzing empirical data. In this research, the manufacturing process was analyzed by process mining technology using transaction data extracted from MES. A relationship model of the manufacturing process and equipment was derived, and various performance analyzes were performed on the derived process model from the viewpoint of work, equipment, and time. The results of this analysis are highly effective in shortening process lead times (bottleneck analysis, time analysis), improving productivity (throughput analysis), and reducing costs (equipment analysis).

An Efficient Analysis Model for Process Quality Information in Manufacturing Process of Automobile Safety Belt Parts (자동차 안전벨트 부품 제조공정에서의 효율적 공정품질정보 분석 모형)

  • Kong, Myung Dal
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.29-38
    • /
    • 2018
  • Through process quality information, the time required for process quality analysis has been drastically shortened, the process defect rate has been reduced, and the manufacturing lead time has been shortened and the on-time delivery rate has been improved. Therefore, The purpose of this study is to develop a quality information analysis system model that effectively shortens the time required for process quality analysis in automobile safety belt parts manufacturing process. As a result of experiments on communication operation between manufacturing execution system (MES) quality server, injection machine control computer, injection machine programmable logic controller (PLC) and terminal, in analyzing quality information, the conventional handwriting input method took an average of 20 minutes, but the new multi-network method took about 2 minutes on average. In addition, the process defect rate was reduced by 13% and the manufacturing lead time was shortened from 28 hours to 20 hours. The delivery compliance rate improved from 96 to 99%.

DURABILITY IMPROVEMENT OF A CYLINDER HEAD IN CONSIDERATION OF MANUFACTURING PROCESS

  • Kim, B.;Chang, H.;Lee, K.;Kim, C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.243-248
    • /
    • 2007
  • The durability of a cylinder head is influenced by the thermal and mechanical history during the manufacturing process, as well as engine operation. In order to improve the durability of cylinder head, both load from engine operation and the preload conditions from the manufacturing process must be considered. The aluminum cylinder head used for a HSDI diesel engine is investigated to reduce the possibility of high cycle fatigue crack in this study. FE analysis is performed to elucidate the mechanism of high cycle fatigue crack in the HSDI diesel cylinder head. Two separate approaches to increase the durability of the cylinder head are discussed: reducing load from engine operation and re-arranging preload conditions from the manufacturing process at the critical location of the cylinder head. Local design changes of the cylinder head and modification of pretension load in the cylinder head bolt were investigated using FE analysis to relieve load at the critical location during engine operation. Residual stress formed at the critical location during the manufacturing process is measured and heat treatment parameters are changed to re-arrange the distribution of residual stress. Results of FE analysis and experiments showed that thorough consideration of the manufacturing process is necessary to enhance the durability of the cylinder head.

Study on the Dimensional Characteristics of the Direct Metal Laser Sintering in Additive Manufacturing Process (DMLS 적층제조의 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Peeling and dimensional deformation that occur during a manufacturing process are accompanied by an increase in the manufacturing cost and production time caused by manufacturing defects. In order to solve this problem, it is essential to predict risk factors at the design stage through computational analysis of the additive manufacturing process and to control shape distortion due to residual stress. In this study, the dimensional characteristics were improved by applying the distortion compensation design through computational analysis to minimize the distortion occurring in the DMLS(Direct Metal Laser Sintering) method of the metal additive manufacturing process.

Information Visualization for the Manufacturing Process Optimization Based on Design of Experiment and Data Analysis (실험계획법과 데이터 분석 기반의 제조공정 최적화를 위한 정보 시각화)

  • Kim, Jae Chun;Jin, Seon A;Park, Young Hee;Noh, Seong Yeo;Lee, Hyun Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.393-402
    • /
    • 2015
  • Data visualization technology helps people easily understand various data and its analysis result, so usefulness of it is expected in the real industrial manufacturing sites. The large amount of data which is occurred at the manufacturing sites is able to fulfill very important roll to improve the manufacturing process. In this paper, we propose an information visualization for the manufacturing process optimization based on design of experimental and data analysis. The manufacturing process may be improved and be reduced cause of faulty by providing the easy-process analysis to understand the operation site through the information visualization of data analysis result.

Process and Quality Data Integrated Analysis Platform for Manufacturing SMEs (중소중견 제조기업을 위한 공정 및 품질데이터 통합형 분석 플랫폼)

  • Choe, Hye-Min;Ahn, Se-Hwan;Lee, Dong-Hyung;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.176-185
    • /
    • 2018
  • With the recent development of manufacturing technology and the diversification of consumer needs, not only the process and quality control of production have become more complicated but also the kinds of information that manufacturing facilities provide the user about process have been diversified. Therefore the importance of big data analysis also has been raised. However, most small and medium enterprises (SMEs) lack the systematic infrastructure of big data management and analysis. In particular, due to the nature of domestic manufacturing companies that rely on foreign manufacturers for most of their manufacturing facilities, the need for their own data analysis and manufacturing support applications is increasing and research has been conducted in Korea. This study proposes integrated analysis platform for process and quality analysis, considering manufacturing big data database (DB) and data characteristics. The platform is implemented in two versions, Web and C/S, to enhance accessibility which perform template based quality analysis and real-time monitoring. The user can upload data from their local PC or DB and run analysis by combining single analysis module in template in a way they want since the platform is not optimized for a particular manufacturing process. Also Java and R are used as the development language for ease of system supplementation. It is expected that the platform will be available at a low price and evolve the ability of quality analysis in SMEs.

Study on Drawing Analysis of an Automotive Front Door and Stamping Die Manufacturing Process (프런트 도어의 드로잉 공정해석과 프레스 금형 제작 공정에 관한 연구)

  • Park, Yong-Guk
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.586-593
    • /
    • 1998
  • In recent automotive industries there has been significant increase in applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles. Enhancement of die quality and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However to successfully apply the result of simulation by a commercial package to the die manufacturing development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcoming of available sheet metal forming softwares. Based on the results of numerical analysis of front door outer panel forming. this paper evaluates the applicability of simulation results to the real die manufacturing for automotive body panels. Also it attempts to select an optimal die manufacturing process including design machining and tryout. Lastly it discusses the expected effects by adopt-ing the selected process in a real stamping die manufacturing facility.

  • PDF

A New Manufacturing Process for the Ring Plate of Automobile Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.311-315
    • /
    • 2008
  • Currently, in automobile industry. the efforts to reduce the manufacturing cost by changing the process of manufacturing are continually performed. In this paper, we proposed a new manufacturing process, the roll bending of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method shape with prototypes.

  • PDF

A New Manufacturing Process for the Ring Plate of Automotive Fuel Tank (자동차 연료탱크용 링 플레이트의 신 제조공법)

  • Chae, M.S.;Lim, Y.H.;Suh, Y.S.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.350-355
    • /
    • 2008
  • Currently, in the automotive industry, the efforts to reduce the manufacturing cost by changing the manufacturing process are continually performed. In this paper, we proposed a new manufacturing process, the roll bending process of a ring plate of automotive fuel tank instead of conventional press blanking process to reduce material loss and manufacturing cost. Finite element analysis was used to optimize the roll bending process to assure rectangular cross-section of the ring plate. Also, spring-back analysis after the roll bending process was performed and dimension of the bending die considering spring-back was analyzed. Finally, we verified a possibility for realization of the proposed method with prototypes.

Morphological Analysis Study for the Development of DB on the Medicinal Herbs Manufacturing Process - with focus on the manufacturing method of Rehmanniae radix - (본초 제조 공정의 DB화를 위한 형태소 분석 연구 - 숙지황 제조 공정을 중심으로 -)

  • Kim, Thaeyul;Kim, Kiwook;Kim, Byungchul;Lee, Byungwook
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.111-124
    • /
    • 2016
  • Objectives : Treatment method using drugs has already been used in Korean medicine for a long time. Moreover, database has been developed and utilized for more efficient management of the treatments that use drugs. Most of such database related to knowledge on drugs is composed of origin, efficacy, temperament, ingredients and examples of application of the standardized drugs. Communication with knowledge information in other specialized areas is also accomplished by using the efficacies and ingredients with the drugs. In this study, we aimed to make data structure of the terminologies that represent the manufacturing process of herbs. However, in spite of the fact that the manufacturing process of the drugs imparts effect on their efficacies and ingredients, details of the manufacturing processes are quite limited to simple text sentences, thereby resulting in substantially lower level of utilization and difficulties in systematic researches on various factors included in the manufacturing processes in comparison to other knowledge on drugs. Methods : This Study extracted the factors necessary in the development of database by executing morphological analysis of the manufacturing process of herbs. Results : The factors are 'Order', 'Act', 'Raw material', 'Tools', 'Supporting materials', 'Intensity', 'Duration Time', 'Interval', 'Focus', 'Repetition Number', 'Untill'. We were able to tell the difference of the manufacturing process with a simple structured query language and the factors. Conclusions : Morphological analysis of medicinal herbs manufacturing Process contributes to standardization with information of the manufacturing process. And it helps to creates a quality management system through the Database.