• Title/Summary/Keyword: Manufacturing Execution System

Search Result 147, Processing Time 0.02 seconds

Operation of a Networked Virtual Manufacturing System using Quasi-Procedural Method

  • Noh, Sang-Do;Sheen, Dong-Mok;Hahn, Hyung-Sang;Lee, Kyoil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.177-180
    • /
    • 1999
  • Nowadays, one of the major technical issues in manufacturing is to create an environment to promote collaboration among diverse engineering activities. Collaborative engineering is an innovative approach integrating widely distributed engineering activities through promoting information sharing and actual collaboration. It requires close interactions among developers, suppliers and customers, and consideration of entire product life cycle from concept to disposal. A carefully-designed operating system is crucial for successful collaboration of many different activities in a Networked Virtual Manufacturing System(NVMS). High extensibility, flexibility and efficiency ale the key characteristics requested of an operating system to handle the complexity of the NVMSs. In this paper, we propose a model of the operating system for collaborative engineering using concurrent quasi-procedural method(QPM). QPM is a goal-driven data management technique for distributed and parallel computing environments. It is to be applied to the evaluation of activities to be executed, validities of input data, execution path of activities for a needed output, and expected to greatly improve the productivity of operations by preventing redundant evaluations. Collaboration among many different engineering activities in NVMSs is to be performed by the network of agents that encapsulate the capabilities of both users and their tools.

  • PDF

Shipment Management System Model for Efficient Management of Transferring Automobile Transmission Parts -In Automobile Parts Manufacturing Industry- (자동차 변속기 부품 이동의 효율적 관리를 위한 출하관리 시스템 모형 -자동차 부품 제조업을 중심으로-)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.147-154
    • /
    • 2016
  • This paper suggests a specific model that could efficiently improve the interaction and the interface between MES(Manufacturing Execution System) server and PDA terminal through RFID(Radio Frequency Identification) system and bar-code system in automative transmission shipment place of the finished assembly parts. The proposed model shows that the new method by RF-Tag system can more efficiently perform to reduce processing time and loading time for shipment, compared with the current approach by bar-code system. It is noted in case of the method by RF-Tag that the effects of proposed model are as follows; (a) While the shipping lead time per truck for carrying by the current method was 35 minutes, the shipping lead time by the new method was 15 minutes. (b) While the accuracy for carrying by the current method was 50%, the accuracy by the new method was 99%.

Development of a Unified Modeler Framework for Virtual Manufacturing System (VMS를 위한 Unified Modeler Framework 개발)

  • Lee, Deok-Ung;Hwang, Hyeon-Cheol;Choe, Byeong-Gyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.52-55
    • /
    • 2004
  • VMS (virtual manufacturing system) may be defined as a transparent interface/control mechanism to support human decision-making via simulation and monitoring of real operating situation through modeling of all activities in RMS (real manufacturing system). The three main layers in VMS are business process layer, manufacturing execution layer, and facility operation layer, and each layer is represented by a specific software system having its own input modeler module. The current version of these input modelers has been implemented based on its own 'local' framework, and as a result, there are no information sharing mechanism, nor a common user view among them. Proposed in this paper is a unified modeler framework covering the three VMS layers, in which the concept of PPR (product-process-resource) model is employed as a common semantics framework and a 2D graphic network model is used as a syntax framework. For this purpose, abstract class PPRObject and GraphicObject are defined and then a subclass is inherited from the abstract class for each application layer. This feature would make it easier to develop and maintain the individual software systems. For information sharing, XML is used as a common data format.

  • PDF

A study on the establishment of an MES system that converges design, processing, and measurement during cutting (절삭가공 시 설계, 가공, 측정을 융합한 MES 시스템 구축에 관한 연구)

  • Park, Hae-Woong;Lee, Seung-Wook;Han, Heui-Bong;Yun, Jae-Woong;Choi, Kye-Kwang;Han, Seong-Ryeol;Kim, Kyung-A;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2021
  • In this paper, when manufacturing large/multi-mold parts (more than 30 core parts),A mold manufacturing (tolerance) management system was established through design-processing linkage.The mold manufacturing (tolerance) management system is a design-based measurement shape/measurement position determination system, M/C processing-linked measurement drive system,It is composed of four parts: CAD-linked measurement result analysis system and manager mold part quality management system.In addition, the constructed system was applied to the field and the effect of system construction was evaluated by comparing it with the existing process.As a result of the evaluation, the measurement precision is within 0.02mm, and the time it takes to measure after the end of processing is shorter than that of the existing process.(12 hours → 2 hours) It was shortened to 16.7%.In addition, it was confirmed that the time required for reprocessing after measurement was reduced by 25% (4 hours → 1 hour) compared to the existing process.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

A development methodology for heterarchical control of flexible manufacturing systems

  • 한영근
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.776-782
    • /
    • 1995
  • This paper presents a methodology for development of a heterarchical control system in Flexible Manufacturing Systems (FMS) environment. A Petri net based model is applied for development of control software. A real-time scheduling methodology for the heterarchical system is also developed and it is used as a software entity in the overall architecture. The partition of generic and specific modules in control software development is emphasized. The control system performs its control tasks in two stages: (1) generation of generic control code and distribution of them to each controller entity prior to system execution; (2) generation of specific control code according to job arrival and its process plan. The control software and the scheduling algorithm are evaluated by a simulation program.

  • PDF

MES system based on real-time process capability management

  • Han, Jin-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.115-122
    • /
    • 2020
  • In this paper, we propose an MES system based on real-time process capability management and how to manage the manufacturing process using the system. The current MES system presents a KPI report that makes it easy to recognize the manufacturing site, but has not been able to derive an improvement method to improve the actual manufacturing site KPI. In other words, it is difficult to extract the cause of the increase in defective rate, decrease in yield, and increase in production lead-time, and to draw an improvement plan and apply it to the manufacturing site. The purpose of the MES system based on real-time process capability management proposed in this paper is to establish an manufacturing operation management system that overcomes the limitations of the existing MES by managing the distribution of major factors of the equipment that determines the process capability. In addition, by presenting a speed improvement method for real-time large-capacity data processing, it is intended to be applied so that the system can operate well.

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

Establish Manufacturing Firms' Response Strategy to the Serious Accident Punishment Act Using IPA (IPA를 활용한 제조기업의 중대재해처벌법 대응방안 수립)

  • Seo, JunHyeok;SungMin Bae
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.607-618
    • /
    • 2023
  • Purpose: In this study, we proposed a plan to establish and implement a safety and health management system by utilizing corporate resources so that manufacturing companies can effectively respond to the Serious Accident Punishment Act. Methods: We identified critical factors and response strategies necessary for manufacturing companies to respond to the Severe Accident Punishment Act effectively and surveyed employees working at the company regarding their importance and performance. Results: In this study, we presented a method of strategically constructing the response strategies (20) shown in previous studies by matching them with the company's resources (leadership, organization, budget, education, and awareness). In particular, leadership refers to the ability of managers who can prevent serious accidents by carrying out safety and health security obligations to avoid safety and health hazards or risks to employees in the business or workplace that is controlled, operated, and managed. Conclusion: Based on the manager's firm leadership, the system's purpose and direction must be accurately set and sufficiently communicated to members. In addition, for companies to identify and improve risk factors on their own, a Process approach must be established to improve execution by referring to legal standards together with field managers and supervisors.

Developing a Big Data Analytics Platform Architecture for Smart Factory (스마트공장을 위한 빅데이터 애널리틱스 플랫폼 아키텍쳐 개발)

  • Shin, Seung-Jun;Woo, Jungyub;Seo, Wonchul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1516-1529
    • /
    • 2016
  • While global manufacturing is becoming more competitive due to variety of customer demand, increase in production cost and uncertainty in resource availability, the future ability of manufacturing industries depends upon the implementation of Smart Factory. With the convergence of new information and communication technology, Smart Factory enables manufacturers to respond quickly to customer demand and minimize resource usage while maximizing productivity performance. This paper presents the development of a big data analytics platform architecture for Smart Factory. As this platform represents a conceptual software structure needed to implement data-driven decision-making mechanism in shop floors, it enables the creation and use of diagnosis, prediction and optimization models through the use of data analytics and big data. The completion of implementing the platform will help manufacturers: 1) acquire an advanced technology towards manufacturing intelligence, 2) implement a cost-effective analytics environment through the use of standardized data interfaces and open-source solutions, 3) obtain a technical reference for time-efficiently implementing an analytics modeling environment, and 4) eventually improve productivity performance in manufacturing systems. This paper also presents a technical architecture for big data infrastructure, which we are implementing, and a case study to demonstrate energy-predictive analytics in a machine tool system.