• Title/Summary/Keyword: Manufacture process

Search Result 1,592, Processing Time 0.022 seconds

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Change of Harmful Micnoorganisms in Pickling Process of Salted Cabbage According to Salting and Washing Conditions (배추김치의 절임공정 조건에 따른 위해미생물 변화)

  • Kim, Jin-Hee;Lee, Yu-Keun;Yang, Ji-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.4
    • /
    • pp.417-423
    • /
    • 2011
  • Salted Cabbage products purchased from different companies at 4 different districts in South Korea were detected in this study. Cabbage and salt are the main materials for kimchi manufacture. The results of general bacteria contaminated in the samples were $1.4{\times}10^5$, $6.4{\times}10^5$, $1.7{\times}10^7$, $3.6{\times}10^7$ CFU/g in cabbage and $2.7{\times}10^3$ CFU/g in salt, respectively. The results of coliforms were detected as $2.4{\times}10^4$ CFU/g, and there was no Escherichia coli in any sample. Staphylococcus aureus was detected in cabbage as $9.9{\times}10^2$, $8.0{\times}10^1$, and $3.0{\times}10^3$ CFU/g, Bacillus cereus was also found in cabbage as $4.1{\times}10^3$ and $1.0{\times}10^1$ CFU/g. The results of Campylobacter jejuni and Vibrio paraheamolyticus were $2.4{\times}10^6$ and $1.0{\times}10^4$ CFU/g in cabbage, respectively. $1.0{\times}10^3$ CFU/g for Yersinia enterocolitica was determined in salt. In case of Listeria monocytogenes, the results were $1.5{\times}10^1$, $1.1{\times}10^2$, and $4.5{\times}10^1$ CFU/g in cabbage. Total batcteria ranged from $1.4{\times}10^1$ to $4.4{\times}10^5$ CFU/g were detected in salting solution, from $1.5{\times}10^4$ to $1.2{\times}10^8$ CFU/g in dehydrated salted-cabbage, from $9.4{\times}10^4{\sim}1.3{\times}10^8$ CFU/g in minced salted-cabbage. The results of E. coli in samples from different companies were different from one to anther. The results of the contamination of S. aureus and B. cereus showed positive in salting solution and dehydrated salted-cabbage at a portion of companies. V. paraheamolyticus was detected in salting solution. The contamination of Y. enterocolitica ranged from $9.5{\times}10^2$ to $1.8{\times}10^3$ CFU/g in salting solution, from $1.7{\times}10^1$ to $2.7{\times}10^2$ CFU/g in dehydrated salted-cabbage, from $1.2{\times}10^2$ to $1.3{\times}10^8$ CFU/g in minced salted-cabbage. The contamination of L. monocytogenes ranged from $8.0{\times}10^2$ to $1.7{\times}10^4$ CFU/g in salting solution, from $2.8{\times}10^2$ to $1.2{\times}10^4$ CFU/g in dehydrated salted-cabbage. During the manufacture processing of Kim chi, microorganisms were detected in cabbages salted in different concentrations of salt solution at 8%, 10%, 12% and 15% for 5-20 hours. As the results, $3.5{\times}10^5-1.7{\times}10^6$, $3.4{\times}10^5-2.5{\times}10^6$, $5.4{\times}10^5-2.3{\times}10^6$, $4.0{\times}10^5-2.3{\times}10^6$ CFU/g were detected for E. coli in samples at different treatment conditions. $1.9{\times}10^4-4.1{\times}10^4$, $4.1{\times}10^3-2.8{\times}10^4$, $1.5{\times}10^3-7.8{\times}10^3$, $2.2{\times}10^4-6.6{\times}10^4$ CFU/g were detected for S. aureus in samples at different treatment conditions. Salmonella typhimurium was detected in salted cabbage with various salt concentration after salting for 5 hrs, the result ranged from $2.5{\times}10^5$ to $3.8{\times}10^6$ CFU/g, and change of microorganism was the smallest in salted cabbage under the concentration of salting solution at 10% for 15 hours. The cabbage salted in 10% salting solution for 15 hours were washed with water for 2 and 3 times, with chlorine for 3 times, and with acetic acid for 3 times. E. coli was detected in the samples washed with water for 2 and 3 times, washed with chlorine for 3 times. The contamination of S. aureus was $3.0{\times}10^5$ CFU/g in the samples washed with water for 2 times, $5.6{\times}10^3$ CFU/g in the samples washed with acetic acid for 3 times, $3.6{\times}10^5$ CFU/g in the samples washed with water for 3 times and same amount in the samples washed with chlorine for 3 times. According to the results, the contamination of S. aureus was $5.6{\times}10^3$ CFU/g lower in samples washed with chlorine and acetic acid than that in samples washed with water. In case of S. typhimurium, it has been detected in samples washed with water and chlorine, $3.0{\times}10^1$ CFU/g as the lowest concentration among all the samples was measured in the samples washed with acetic acid for 3 times.