• Title/Summary/Keyword: Manual calculation

Search Result 131, Processing Time 0.023 seconds

Development of Priority Calculation Models for Enacting and Revising the Korea Defense Standards and Specifications (국방표준 및 규격의 제·개정 우선순위 산출을 위한 모형 개발)

  • Sung, Si-Il;Kim, Hyeunggeun;Kim, Yong Soo;Bae, Sukjoo;Kim, Jun-Su;Kim, Jong-Man
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.1
    • /
    • pp.109-120
    • /
    • 2016
  • Purpose: This study developed a method of determining priorities for evaluating and revising defense standards. Methods: The proposed data integration and refinement methods are used to obtain component reliability information and to determine the frequency of component citation based on Pareto analysis. Based on the reliability information and the frequency of cited components, the target components for quality improvement can be determined and improved using various methods, such as engineering changes, special meetings, additional training, and revising the maintenance manual. Results: Based on the proposed process, we identified components that need to be improved in order to enhance the quality and reliability. Conclusion: Our process will improve the quality and reliability of weapon systems. The proposed process can be adopted for various weapon systems to enhance their quality and reliability, and to reduce military spending.

Development of Power Performance Evaluation System using Modeling Technology (설비 모델링 기술을 이용한 발전성능평가 시스템 구성방안 연구)

  • Lee, Ji-Hoon;Lee, In-tae;Jung, Nam-Joon;Bae, Jung-Seok;An, Young-Mo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Performance evaluation of a plant to efficiently manage and maintain the performance of the plant is a very important procedure. However, since the conventional performance evaluation method is an Excel-based manual method, the preparation procedure is complicated and the versatility is poor. In this paper, we analyze the problems of the existing performance evaluation system, effectively model the equipment, calculate the missing physical properties, and improve the versatility, efficiency and accuracy of the performance evaluation through the equipment modeler which performs automatic index calculation based on this.

A deep neural network to automatically calculate the safety grade of a deteriorating building

  • Seungho Kim;Jae-Min Lee;Moonyoung Choi;Sangyong Kim
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.313-323
    • /
    • 2024
  • Deterioration of buildings is one of the biggest problems in modern society, and the importance of a safety diagnosis for old buildings is increasing. Therefore, most countries have legal maintenance and safety diagnosis regulations. However, the reliability of the existing safety diagnostic processes is reduced because they involve subjective judgments in the data collection. In addition, unstructured tasks increase rework rates, which are time-consuming and not cost-effective. Therefore, This paper proposed the method that can calculate the safety grade of deterioration automatically. For this, a DNN structure is generated by using existing precision inspection data and precision safety diagnostic data, and an objective building safety grade is calculated by applying status evaluation data obtained with a UAV, a laser scanner, and reverse engineering 3D models. This automated process is applied to 20 old buildings, taking about 40% less time than needed for a safety diagnosis from the existing manual operation based on the same building area. Subsequently, this study compares the resulting value for the safety grade with the already existing value to verify the accuracy of the grade calculation process, constructing the DNN with high accuracy at about 90%. This is expected to improve the reliability of aging buildings in the future, saving money and time compared to existing technologies, improving economic efficiency.

A Commissioning of 3D RTP System for Photon Beams

  • Kang, Wee-Saing
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.119-120
    • /
    • 2002
  • The aim is to urge the need of elaborate commissioning of 3D RTP system from the firsthand experience. A 3D RTP system requires so much data such as beam data and patient data. Most data of radiation beam are directly transferred from a 3D dose scanning system, and some other data are input by editing. In the process inputting parameters and/or data, no error should occur. For RTP system using algorithm-bas ed-on beam-modeling, careless beam-data processing could also cause the treatment error. Beam data of 3 different qualities of photon from two linear accelerators, patient data and calculated results were commissioned. For PDD, the doses by Clarkson, convolution, superposition and fast superposition methods at 10 cm for 10${\times}$10 cm field, 100 cm SSD were compared with the measured. An error in the SCD for one quality was input by the service engineer. Whole SCD defined by a physicist is SAD plus d$\sub$max/, the value was just SAD. That resulted in increase of MU by 100${\times}$((1_d$\sub$max//SAD)$^2$-1)%. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth in uniform medium of relative electron density (RED) 1, PDDs for 4 algorithms of dose calculation, Clarkson, convolution, superposition and fast-superposition, were compared with the measured. The calculated PDD were similar to the measured. For 10${\times}$10 cm open field, 1 m SSD and at 10 cm depth with 5 cm thick inhomogeneity of RED 0.2 under 2 cm thick RED 1 medium, PDDs for 4 algorithms were compared. PDDs ranged from 72.2% to 77.0% for 4 MV X-ray and from 90.9% to 95.6% for 6 MV X-ray. PDDs were of maximum for convolution and of minimum for superposition. For 15${\times}$15 cm symmetric wedged field, wedge factor was not constant for calculation mode, even though same geometry. The reason is that their wedge factor is considering beam hardness and ray path. Their definition requires their users to change the concept of wedge factor. RTP user should elaborately review beam data and calculation algorithm in commissioning.

  • PDF

Development of Total Body Irradiation Program (전신방사선조사 프로그램 개발)

  • Choi Byung Ock;Jang Ji Sun;Kang Young Nam;Choi Ihl Bohng;Shin Sung Kyun
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.130-137
    • /
    • 2005
  • In total body irradiation (T81) for leukemia, we have a two methode. One is a AP (anterior-posterior) method and the other is a Lateral methode. Our hospital used lateral methode. T81 must consider about body contour, because of homogeneous dose distribution. For compensation about irregular body contour, we use compensator. For T81 treatment, we must be considered, accurate manufacture of compensator and accurate calculation of dose. We developed the automatic program for T81. This program accomplished for compensator design and dose calculation for irregular body. This program was developed for uses to use in a windows environment using the IDL language. In this program, it use energy data for each energy: TMR, output factor, inverse square law, spoiler, field size factor. This program reduces the error to happen due to the manual. As a development of program, we could decrease the time of treatment plan and care the patient accurately.

  • PDF

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

Development of a Building Safety Grade Calculation DNN Model based on Exterior Inspection Status Evaluation Data (건축물 안전등급 산출을 위한 외관 조사 상태 평가 데이터 기반 DNN 모델 구축)

  • Lee, Jae-Min;Kim, Sangyong;Kim, Seungho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.665-676
    • /
    • 2021
  • As the number of deteriorated buildings increases, the importance of safety diagnosis and maintenance of buildings has been rising. Existing visual investigations and building safety diagnosis objectivity and reliability are poor due to their reliance on the subjective judgment of the examiner. Therefore, this study presented the limitations of the previously conducted appearance investigation and proposed 3D Point Cloud data to increase the accuracy of existing detailed inspection data. In addition, this study conducted a calculation of an objective building safety grade using a Deep-Neural Network(DNN) structure. The DNN structure is generated using the existing detailed inspection data and precise safety diagnosis data, and the safety grade is calculated after applying the state evaluation data obtained using a 3D Point Cloud model. This proposed process was applied to 10 deteriorated buildings through the case study, and achieved a time reduction of about 50% compared to a conventional manual safety diagnosis based on the same building area. Subsequently, in this study, the accuracy of the safety grade calculation process was verified by comparing the safety grade result value with the existing value, and a DNN with a high accuracy of about 90% was constructed. This is expected to improve economic feasibility in the future by increasing the reliability of calculated safety ratings of old buildings, saving money and time compared to existing technologies.

Measurement of Radiation Using Tissue Equivalent Phantom in ICR Treatment (자궁강내 근접방사선조사시 인체조직등가 팬톰을 이용한 방사선량 측정)

  • Jang, Hong-Seok;Suh, Tae-Suk;Yoon, Sei-Chul;Ryu, Mi-Ryeong;Bahk, Yong-Whee;Shinn, Kyung-Sub
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • This study is to compare A point doses in human pelvic phantom by film dosimetry, computer planning and manual calculation by using of along-away table. We developed tissue equivalent human pelvic phantom composed of four pieces of cylindrical acryl tubes with water, to simulate intracavitary radiation (ICR) in patients with cervix cancer. When the phantom assembled from 4 pieces, it has a small space for inserting Fletcher-Suit-Delclos applicator like a human vagina. Fletcher-Suit-Delclos applicator inserted into the space was packed tightly with furacin gauzes, and three $^{137}Cs$ sources with radioactivity of $15.7mg\;Ra-eq$ were inserted into the tandem. For the film dosimetry, two pieces of X-OMAT V film (Kodak Co.) of which planes include point A, were arranged orthogonally in the slits between phantoms. A point dose and iso-dose curves were measured by means of optical densitometer. A point doses by film dosimetry, RTP system and manual calculation by using of along-away table were compared, and iso-dose curves by film dosimetry and computer planning were also compared. The dose of A point was 51.2cGy/hr by film dosimetry, 46.7cGy/hr by RTP system and 47.9 cGy/hr by along-away table. A point dose by computer planning was similar to the dose by calculation using of along-away table with acceptable accuracy $({\pm}3%)$, however, the dose by film dosimetry was different from two others with about 10% error. Since most clinical beams contains a scatter component of low energy photons, the correlation between optical density and dose becomes tenuous. In addition, film suffers from several potential errors such as changes in processing conditions, interfilm emulsion differences, and artifacts caused by air pockets adjacent to the film. For these reasons, absolute dosimetry with film is impractical, however, it is very useful for checking qualitative patterns of a radiation distribution. In future, solid state dosimeter such as TLD must be used for the dosimetry of ionizing radiation. When considerable care is used, precision of approximately 3% may be obtained using TLD.

  • PDF

Characteristics and Energy Absorbing Capacity for Rockfall Protection Fence from In-Situ Rockfall Tests (현장 낙석실험을 통한 낙석방지울타리의 특성 및 성능 평가)

  • 구호본;박혁진;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.111-121
    • /
    • 2001
  • Rockfall protection fences are used for diminishing rockfall damage in roads side slopes. In order to install the fences in effective way, the conditions of rock slopes and total predicted impact energy of fa11ing rock should be considered. However, the fences have been constructed without any consideration for lithology, height and slope angle of rock slope in Korea. In addition, the information about the performance of the protection fences, which should be evaluated by in-situ test or laboratory test in order to check out the practical use in the field, is not available. Therefore, in design manual for the rockfall protection fence, the specific details for the installation of this type of fence are not provided yet. The full sized rockfall in situ test was carried out for the calculation of falling energy of rock and the evaluation of the maximum energy absorbing capacity of fence. For this test, the rock slopes whose heights are about 20 m and dip angle of 65 degree, have been chosen. This is because those geometries are mean height and slope angle of most road cut slopes along Korean national highway. Based on the preliminary simulation procedure, four different sizes of concrete ball (0.7, 1.3, 2.3 and 4.3 ton) were prepared and flour different types of protection fence were constructed. The results of this test provide information about the maximum energy absorbing capacity of the fence, kinetic energy of rockfall and restitution coefficient, and these results can be utilized in the establishment of rockfall fence design and construction manual.

  • PDF

A Study on the Analysis Technique of Sequence Landscaping through the Application and Development of Visual Amount Calculation Program of Landscapes (경관의 시각량 산출 프로그램 개발과 적용을 통한 연속경관 시퀀스 분석기법 연구)

  • Koo, Min-Ah
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.12-25
    • /
    • 2016
  • In this study, in order to facilitate analysis in a continuous sequence, including the concept of the landscape experience time, countless frames of a continuous landscape were extracted. The amount of visual elements in each frame was data-converted numerically to take advantage of the quantitative data necessary for landscape planning and design was calculated in the rhythm of the sequence. In Order to shoot video with the flow of the line of sight of experience in landscape districts and landscape control points along the landscape corridor which is a continuous path, each of the corresponding computer motion techniques. This study developed a CRVP Koo computer program to effectively calculate the continuous visual number of specific landscape components by extracting uncounted frames at regular intervals, and after verifying, attempting to apply this to the target site. Through the applied result, it was possible to extract the digitized quantitative rhythm for each component of each landscape, the margin of error is very small when compared with the results of manual in photoshop, it was able to overcome the drawbacks of the manual. Using the rhythm of the derived sequence, and those close to the experience of the landscape, it was possible to achieve quantitative analysis derived from a variety of perspectives as well as was possible to be used as quantitative basis data and analysis technique for landscape planning and design.