• Title/Summary/Keyword: Manning Equation

Search Result 54, Processing Time 0.027 seconds

Reliability Analysis of Storm Sewer System by AFOSM Method (AFOSM 방법에 의한 하수관망의 신뢰성 분석)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.201-209
    • /
    • 1993
  • The purpose of this study is to analyze the reliability of storm sewer system and AFOSM method is applied on Sinjeong detention basin area to decide the applicability of AFOSM method. The Rackwitz Algorithm, which is suitable for minimizing the error due to non-linearity, is used to find the failiure point. The performance functions are established to calculate the risk, rational formula is used to determine the load and Manning equation and Darcy-Weisbach equation are used to determine the sewer capacity, and the results are 0.119, 0.127, respectively. The Risk-Safety Factor relation for each return period is derived and the designing of storm sewer system based on reliability analysis is enabled.

  • PDF

Measurements of Velocity Profiles Inside a Partially Filled Pipeline Using PIV (PIV를 이용한 비만관내 유속 분포 측정)

  • Choi, Jung-Geun;Sung, Jae-Yong;Lee, Moung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.773-778
    • /
    • 2006
  • Velocity profiles inside a partially filled pipline have been investigated experimentally. To measure the velocity fields, a particle image velocimetry (PIV), which is a recent quantitative visualization technique, is applied. The velocity profile inside a circular pipe is well known, but if the pipe is partially filled, the problem is entirely different in the sense that the velocity distribution is significantly affected by the slope of pipe and filled water level, and so on. In order to calculate exact flow rate in the open channel or partially filled pipeline, three-dimensional velocity distributions at a given cross-sectional area are measured and compared the flow rates with the previously known empirical formula of Manning equation. The results show that the velocity profiles at center plane is considerably different from each other when the slope and water level change. Thus, The three-dimensional velocity profile can be the most plausible estimate for the exact flow rate.

  • PDF

Risk Model for the Safety Evaluation of Dam and Levee: II. Application (댐 및 하천제방에 대한 위험도 해석기법의 개발 : II. 적용 예)

  • Han, Geon-Yeon;Lee, Jong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.691-698
    • /
    • 1997
  • The risk assessment model for dam and levee is applied to a river where two adjacent dams are located in the upstream of the watershed. "A" dam is proven to be safe with 200-year precipitation and unsafe with PMP condition, whereas "B" dam to be safe with 200-year precipitation and PMP condition. The computed risk considering the uncertainties of the runoff coefficient. initial water depth and relevant data of the dam and spillway turn out to be equivalent results in Monte-Carlo and AFOSM method. In levee risk model, this study addresses the uncertainty of water surface elevation by Manning's equation. Monte-Carlo simulation with the variations of Manning's roughness coefficient is calculated by assuming that it follows atriangular distribution. The model can be used for preparing flood risk maps, flood warning systems, and establishing nation's flood disaster protection plan.

  • PDF

A Study on Discharge Estimation by Representative Parameter Method in Open Channels (개수로에서의 대표 매개변수 방법에 의한 유량산정에 관한 연구)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2012
  • The discharge estimation that means the most important element in a wetlands ecosystem and rivers is a prime concern. All the interim, this discharge estimation depends on stage-discharge curve, but the limitation of stage-discharge curve that uses only connection between the stage and discharge is widely well known. Thus, this paper proposed a method of discharge estimation in a section through "representative parameter estimation method" by using Manning and Chezy equations that have been extensively used in an open channel. Each result is presented by both RMSE and Discrepancy Ratio. The scale difference for the results between laboratory and natural open channel data existed, but the each result showed that the estimated discharge agree with the measured discharge. If the verification and improvement are conducted in various rivers through continuous study, the easy and rapid discharge estimation will be possible. So, the proposed method will be utilized in the water resources fields.

Development and Application of Grid-Based Urban Surface Runoff Model (격자기반의 도시유역 지표면 유출모형의 개발 및 적용)

  • Kim, Mun-Mo;Lee, Jeong-Woo;Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.25-38
    • /
    • 2007
  • A grid-based urban surface runoff model for simulating the temporal variation and spatial distribution of overland flow in a drainage area was developed. The process of routing of overland flow is modeled by the nonlinear storage equation which is composed of the continuity equation and the Manning's equation. For model operation, the drainage area is divided into grid areas, and spatially distributed topographical and hydrological information for model inputs is provided. Then overland flow is routed for each of the discretized cells of the area. In order to test the applicability of this model, temporal variations and spatial distributions of flow depth and overland flow was simulated in a fictitious and a real urbanized Kunja drainage area. Results indicate that the model can simulate reasonably well the urban runoff hydrograph.

Numerical Experiment for the Estimation of Equivalent Resistance Coefficient for the Simulation of Inundation over Densely Populated Structures (구조물 밀집지역 범람수치모의를 위한 상당저항계수 산정 수치실험)

  • Kim, Hyeong-Seok;Choi, Jun-Woo;Ko, Kwang-Oh;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.532-539
    • /
    • 2008
  • Kwon et al.(2008) carried out a hydraulic experiment in order to evaluate Manning coefficient, which implicates flow resistance due to bottom friction as well as drag caused by the squared piers higher than water depth and arranged with equal intervals, under the flow condition with a constant drag coefficient, $Re>10^4$. And, based on the equation of equilibrium, they proposed a formula for the equivalent resistant coefficient including empirical drag interaction coefficient obtained by using the experimental results. In this study, the hydraulic experiment was simulated using FLOW-3D, a 3-dimensional computational fluid dynamic code. The computations were compared with the experiment results as well as the semi-theoretical formula, and the comparisons show a good agreement. From the agreement, it was confirmed that when flow resistance bodies were higher than water depth, Manning n value increases with 2/3 power of water depth as shown in the theoretical formula and that drag interaction coefficient was dominated by their intervals.

Explicit Equations of Normal Depth for Drainage Pipes (하수관 등류수심 양해법 산정식)

  • Yoo, Dong-Hoon;Rho, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.527-535
    • /
    • 2005
  • The computation of normal depth is very important for the design of channel and the analysis of water flow. Drainage pipe generally has the shape of curvature like circular or U-type, which is different from artificial triangular or rectangular channel. In this case, the computation of normal depth or the derivation of equations is very difficult because the change of hydraulic radius and area versus depth is not simple. If the ratio of the area to the diameter, or the hydraulic radius to the diameter of pipe is expressed as the water depth to the diameter of pipe by power law, however, the process of computing normal depth becomes relatively simple, and explicit equations can be obtained. In the present study, developed are the explicit normal depth equations for circular and U-type pipes, and the normal depth equation associated with Hagen (Manning) equation and friction factor equation of smooth turbulent flow by power law is also proposed because of its wide usage in engineering design.

The estimation of river discharge by using the mean velocity equation in a unsteady condition (평균유속공식을 이용한 부정류 하천유량 산정)

  • Choo, Tai Ho;Chae, Soo Kwon;Yoon, Hyeon Cheol;Yun, Gwan Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6558-6564
    • /
    • 2013
  • As the average indicator for amount of water flowing in any cross section of a river, the mean discharge has been reported to be a very important factor for examining water circle constructions in a river basin, the design and construction of a hydraulic structure, and water front area use and management. The stage-discharge curve based on discharge and stage data measured in a normal season were basically derived. Using this derivation, the necessary discharge data was obtained. The values produced in this manner corresponded to the measured data in a uniform flow state well, but showed limited accuracy in a flood season (unsteady flow). In the present paper, the mean velocity in unsteady flow conditions, which exhibited loop form properties, was estimated using the new mean velocity formula derived from Chiu's 2-D velocity. The results of RMSE and Polar graph analyses showed that the proposed equation exhibited approximately nineteen times the accuracy compared to the Manning and Chezy equations.

Analysis of Roughness Coefficient in Gravel-bed Rivers (자갈하천의 조도계수 특성 분석)

  • Lee, Chan Joo;Kim, Yong Jeon;Kim, Ji Sung;Kim, Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.149-157
    • /
    • 2010
  • The purpose of this study is to analyse characteristics of roughness coefficient based on bed-material size of the gravel-bed rivers using field data obtained from nine domestic rivers. Roughness coefficient is calculated using Manning's equation. Roughness coefficient decreases with increasing discharge, but above a certain discharge, it tends to be constant. Similarly, roughness coefficient shows reverse relationship with relative smoothness (R/D). The regression equation adopting theoretically derived value of 2.03 as log coefficient indicates close similarity with the previous equation proposed by Limerinos (1970). Roughness coefficient values converged above certain discharges lie in the range from 0.024 to 0.045. From them, empirical equations based only on bed-material size are derived and compared with those suggested by the previous studies.

Calculation of Roughness Coefficient in Gravel-bed River with Observed Water Levels (실측 수위에 의한 자갈하천의 조도계수 산정)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.755-768
    • /
    • 2007
  • The purpose of this study is to analyse the characteristics of Manning's roughness coefficient according to change of discharge by using observed data obtained from a stable gravel-bed river and to investigate the applicability of the relevant existing empirical methods to it. Observed water level and discharge data are used as input data for the USGS computer program NCALC model for calculation of the roughness coefficient. Calculated values are compared with roughness values which are estimated with four widely used methods. The results show that though the empirical methods are able to give similar roughness values only for flood flow, they seem to have rather high uncertainty because of necessity of subjective judgement and differences of resultant values. Roughness coefficients for normal-low flow cannot be estimated from the existing empirical formulae. Especially, using the Manning equation for calculating them should be careful as this provides a wide range of estimated values in normal-low flow. The relations between the roughness coefficient and characteristic size of bed materials are different from them in flood flow even though they have a close relations.