• Title/Summary/Keyword: Manned Aircraft

Search Result 77, Processing Time 0.021 seconds

Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle (롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발)

  • Yoo, Seunghoon;Park, Myunghwan;Hwang, Seongin;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

R&D and Standardization Trends on Control and Non-payload Communication for Unmanned Aircraft Systems (무인기 제어 전용 통신 기술 표준화 동향)

  • Kim, H.W.;Kang, K.S.;Lee, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.3
    • /
    • pp.70-77
    • /
    • 2018
  • Considering the increased demand for unmanned aircraft systems (UASs) in various commercial and public sectors, it is necessary to integrate a UAS into a national airspace program for manned aircraft operations. For the safe operation of a UAS in a national airspace program, in addition to the detection and avoidance capability at a similar level of "see and avoid" by pilots of manned aircraft, a highly reliable control and non-payload communication (CNPC) link is needed for unmanned aircraft vehicle (UAV) control at a similar level as aircraft control by manned aircraft pilots. In this paper, we analyze the trends in domestic and international standardization activities on the UAS CNPC network technology for the safe integration of UAS into a national airspace program.

UAM Parallel Corridor Collision Risk Analysis based on Collision Risk Model (충돌 위험 모델을 활용한 UAM 평행 항로 충돌 위험 분석)

  • Youn-sil Kim;Joong-won Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.561-567
    • /
    • 2023
  • In this study, the collision risk of the UAM (Urban Air Mobility) corridor was analyzed using a collision risk model applied to the manned aircraft corridor. According to the K-UAM roadmap and operating concept, UAM is expected to fly on a designated route similar to existing manned aircraft operations and operate on two routes, traveling back and forth between the departure point and the destination point. Among domestic manned aircraft routes, the manned aircraft operation between Gimpo Airport and Jeju Airport is similar to this and takes the form of a parallel route with a lateral separation distance between the two routes. In this study, we analyzed the collision risk of the UAM corridor according to the lateral separation distance using a collision risk model used to analyze the collision risk of manned aircraft parallel routes for a similar type of UAM corridor. Based on this, we finally analyzed how many parallel routes could be installed within the width of the Han River, considering the K-UAM demonstration route.

Intruder Tracking and Collision Avoidance Algorithm Design for Unmanned Aerial Vehicles using a Model-based Design Method (모델 기반 설계 기법을 이용한 무인항공기의 침입기 추적 및 충돌회피 알고리즘 설계)

  • Choi, Hyunjin;Yoo, Chang-Sun;Ryu, Hyeok;Kim, Sungwook;Ahn, Seokmin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.83-90
    • /
    • 2017
  • Unmanned Aerial Vehicles(UAVs) require collision avoidance capabilities equivalent to the capabilities of manned aircraft to enter the airspace of manned aircraft. In the case of Visual Flight Rules of manned aircraft, collision avoidance is performed by 'See-and-Avoid' of pilots. To obtain those capabilities of UAVs named as 'Sense-and-Avoid', sensor-system-based intruder tracking and collision avoidance methods are required. In this study, a multi-sensor-based tracking, data fusion, and collision avoidance algorithm is designed by using a model-based design tool MATLAB/SIMULINK, and validations of the designed model and code using numerical simulations and processor-in-the-loop simulations are performed.

Spatial database architecture for organizing a unified information space for manned and unmanned aviation

  • Maksim Kalyagin;Yuri Bukharev
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.545-554
    • /
    • 2023
  • The widespread introduction of unmanned aircrafts has led to the understanding of the need to organize a common information space for manned and unmanned aircrafts, which is reflected in the Russian Unmanned aircraft system Traffic Management (RUTM) project. The present article deals with the issues of spatial information database (DB) organization, which is the core of RUTM and provides storage of various data types (spatial, aeronautical, topographical, meteorological, vector, etc.) required for flight safety management. Based on the analysis of functional capabilities and types of work which it needs to ensure, the architecture of spatial information DB, including the base of source information, base of display settings, base of vector objects, base of tile packages and also a number of special software packages was proposed. The issues of organization of these DB, types and formats of data and ways of their display are considered in detail. Based on the analysis it was concluded that the optimal construction of the spatial DB for RUTM system requires a combination of different model variants and ways of organizing data structures.

Study of the UCAS Susceptibility Parameters and Sensitivities by using Monte-Carlo Simulation (몬테카를로 모사법을 이용한 무인전투기의 위약도에 영향을 미치는 파라미터와 민감도에 대한 연구)

  • Choi, Kwang-Sik;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.242-253
    • /
    • 2011
  • The typical missions for the current stand-off UAVs are surveillance and reconnaissance. On the other hand, the primary mission for the future UCAS will be combat mission such as SEAD under the man-made ultimately hostile environment including SAM, antiaircraft artillery, threat radar, etc. Therefore, one of the most important challenges in UCAS design is improvement of survivability. The current studies for aircraft combat survivability are focused on the improvement of susceptibility and vulnerability of manned aircraft system. Although the survivability design methodology for UCAS might be very similar to the manned combat system but there are some differences in mission environment, system configuration, performance between manned and unmanned systems. So the parameters and their sensitivities which affect aircraft combat survivability are different in qualitatively and quantitatively. The susceptibility related parameters for F-16 C/D and X-45A as an example of manned and unmanned system are identified and the susceptibility parameter sensitivities are analyzed by using Monte-Carlo Simulation in this study.

Development Direction of Manned and Unmanned Complex Combat System to Respond to the Future Battlefield: Focusing on ICT (미래 전장 대응을 위한 유무인 복합전투체계 발전방향: ICT를 중심으로)

  • Bal Jeong;Kyungsook Lee;Bonjin Koo
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.4
    • /
    • pp.47-61
    • /
    • 2024
  • A manned and unmanned complex combat system refers to a combat system that performs various missions by operating manned and unmanned aircraft together. The combat system is rapidly becoming more advanced due to recent remarkable developments in information and communication technologies(ICT), including AI and 5G, and major countries are actively using it in actual battlefields. Furthermore, the importance of this combat system is increasing and it is emerging as the core of future warfare. Accordingly, this study analyzed the concept of the manned and unmanned complex combat system and the current status of its integration with ICT, presented an operational concept utilizing it, and then analyzed the actual current status of related combat systems at home and abroad. Lastly, five suggestions were presented for the development of domestic manned and unmanned complex combat systems.

Human-in-the-Loop Simulation Analysis of Conflict Resolution Maneuvers Using an Air Traffic Control Simulator (항공관제시뮬레이터를 이용한 항공기간 회피 기동의 위험도 분석)

  • Jeong, Se hun;Oh, Hyeju;Choi, Keeyoung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.739-747
    • /
    • 2015
  • With rapid growth in the technologies and demand of Remotely Piloted Aircraft Systems (RPASs), integration of such systems into the existing airspace system is becoming an issue in many countries. RPAS have different flight performances, communication characteristics, separation assurance mechanisms, and human machine interfaces from manned aircraft. To establish rules and regulations for RPAS integration, it is important to understand the impacts of RPASs on the airspace system. A simulation system that integrates manned aircraft, air traffic control, and RPASs is developed in Inha University to investigate these impacts through Human-in-The-Loop (HiTL) simulations. Three conflict resolution scenarios between a manned aircraft and a Remotely Piloted Aircraft (RPA) were constructed and tested. Human factors such as the response times of pilots and controllers were measured and analyzed as well as the risk of each maneuver.

Development and Validation of Manned and Unmanned Aircraft Simulation Engine for Integrated Operation in NAS (국가공역에서의 유·무인기 혼합운용을 위한 시뮬레이션엔진 개발 및 검증)

  • Kim, Dong-Hyun;Kim, Jun-Hyung;Yoon, Sug-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • Recently, manned and unmanned aerial vehicles are faced with problems such as collision detection and avoidance, link-loss for integrated operations in NAS. Hence, on the basis of the performance data of EUROCONTROL's BADA and NASA, an environment was developed to simultaneously handle simulations of integrated operations of MAVs and UAVs along with ATC/ATM simulations, and dynamic modeling was then carried out. To validate the developed model, simulations were performed on a 6-DOF model by its segments and the results were compared to the RMSE results.

The Development of Air Escort Tactics for High-Value Airborne Assets Using Manned-Unmanned Teaming and the Study on Effective Force Disposition Using M&S (유무인 협업을 활용한 고가치 공중 자산의 호위 전술 개발과 M&S를 활용한 효과적인 전력배치 방안 연구)

  • Park, Myunghwan;Yoo, Seunghoon;Oh, Jihyon;Seol, Hyeonju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.401-411
    • /
    • 2022
  • As the role of high-value air assets(e.g., AWACS, JSTARS, Rivet Joint, E-2) becomes more critical in modern warfare, the air escort for these assets blocking attacks from any potential enemy fighter also becomes vital. Without the escort, the operations of the assets become restricted. However, such an escort is not always possible due to the limited flight time of the escort fighters. In this paper, we introduce an escort tactics for high-value air assets performed by the manned-unmanned teaming composed of a transport aircraft and UAVs(unmanned aerial vehicles). In this tactics, the transport aircraft plays the role of an aircraft carrier, which carries, launches, and retrieves the UAVs. The missions of UAVs in this tactics are to detect and engage enemy fighters. We also introduce the simulation result of this tactics to identify the UAVs' required capabilities and optimal maneuvering.