• Title/Summary/Keyword: Mankyeong river stream

Search Result 12, Processing Time 0.023 seconds

Change in Agricultural Irrigation Water Quality in Mankyeong River (만경강 수계 농업용수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Lee, Sang-Bok;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.6-7
    • /
    • 1999
  • The water quality at Mankyeong River was surveyed 13 sites of main stream for 6 months from April to September in 1995 and 1997. The monthly average value of $NH_4-N$, $SO_4^{2-}$ and $Cl^-$ showed the highest peak in April while that of $NO_3-N$ showed the highest peak in August. The monthly average value of COD showed the highest peak in September at high temperature season. Concentrations of $NH_4-N$ and $SO_4^{2-}$ in Mankyeong River stream exceeded the standard water quality criteria in many sites. The water quality of Mankyeong River stream was not suitable for the irrigation source excepted the sites such as Hari, Gosan stream and Soyang stream. The floodgate of Mokcheon, Yocheon, Jeonju and Samcheon stream were rapidly polluted by the sewage of city, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of ionic concentrations in Mankyeong River stream was the highest at floodgate of Yocheon by influence of the sewage from city and industry. The order of the major anions and cations concentration in Mankyeong River stream were $SO_4^{2-}$ > $Cl^-$ > $NO_3-N$ > $SO_4^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH_4^+$ > $Mg^{2+}$ > $K^+$, respectively.

  • PDF

Study of Freshwater Fish Fauna and Distribution of Introduced Species of Mankyeong River, Korea (만경강의 담수어류 및 외래어종의 분포)

  • Lee, Wan-Ok;Kim, Kyeong-Hwhan;Kim, Jong-Hwa;Hong, Kwan-Eui
    • Korean Journal of Ichthyology
    • /
    • v.20 no.3
    • /
    • pp.198-209
    • /
    • 2008
  • During studies of the fish fauna and communities of Mankyeong River, which flows to the Yellow Sea, 14 families in 44 genera and 63 species of freshwater fishes were caught. Zacco platypus (27.7%) was the dominant species and Z. koreanus (11.3%) the subdominant species in this river. Twenty-three species of Korean endemic fishes appeared, and two of these, Pseudopungtungia nigra and Liobagrus obesus, represented endangered Korea species. Community structure of each branch stream was stable, showing appropriate dominant species: Z. koreanus in Jeonju Stream, Z. platypus in Kosan and Soyang Streams, and Carassius auratus in Mankyeong main stream. Three introduced species appeared: C. cuvieri, Micropterus salmoides, and Lepomis macrochirus. Among these introduced species, M. salmoides expanded its territory from midstream to downstream because of its strong carnivorous tendency and it favoring of lentic waters. This distribution of M. salmoides affected the number and distribution of small native freshwater fishes, especially those in the subfamily Acheilognathinae.

Seasonal Variation in Water Quality of Mankyeong River and Groundwater at Controlled Horticulture Region (만경강과 그 인근 시설재배지 지하수의 시기별 수질변화)

  • Lee, Kyeong-Bo;Lee, Deog-Bae;Kang, Jong-Gook;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.223-231
    • /
    • 1999
  • This study was carried out to investigate the factors influencing water quality of the river (Mankyeong River) and groundwater in controlled horticulture region from 1994 to 1998. Water quality of Mankyeong River was monitored at 13 sites along main stream for 6 months from April to September from 1994 to 1997. Monthly average concentrations of $NH_4-N$, $SO{_4}^{2-}$ and $Cl^-$ were highest in April, while that of $NO_3-N$ was highest in August. Monthly average concentrations of COD was highest in September Concentrations of $NH_4-N$ and $SO{_4}^{2-}$ in many sites of Mankyeong River exceeded the water quality criteria of agricultural water for irrigation. Water quality of Mankyeong River was not suitable for the irrigation source excepted the sites such as Hari, Gosan and Soyang stream. The floodgates of Mokcheon, Yocheon, Jeonju and Samcheon streams were rapidly polluted by the municipal sewage, otherwise the Iksan stream was rapidly polluted by the sewage of swine. The sum of inorganic ion concentrations in Mankyeong River was highest at floodgate of Yocheon due to the sewages municipal and industrial. The order of the major anions and canons concentration in Mankyeong River- stream were $SO{_4}^{2-}$ > $Cl^-$ > $NO{_3}^-$ > $PO{_4}^{3-}$ and $Na^+$ > $Ca^{2+}$ > $NH{_4}^+$ > $Mg^{2+}$ > $K^+$, respectively. The geoundwater quality at controlled horticulture region was surveyed 4 sites from 1994 to 1998. Concentrations of $NH_4-N$ and $NO_3-N$ were lower at the deeper groundwater. However there was no difference between the concentrations of $SO{_4}^{2-}$ and $Na^+$, and the groundwater depth below 15m. Contents of $NH_4-N$, $NO_3-N$, $PO{_4}^{3-}$, $SO{_4}^{2-}$, $Na^+$ and $Cl^-$ in groundwater were the highest at dry season. Nitrate-N level, exceeded $20mg\;l^{-1}$, the critical level for agricultural usage, at Yongjinmyeon Wanju and $PO{_4}^{3-}$ concentration were higher at Seogtandong Iksan than the other places.

  • PDF

Evaluation of Water Quality Characteristics on Tributaries of Mankyeong River Watershed (만경강 유역내 하천의 특성별 영향 평가)

  • Yun, Sun-Gang;Lee, Jong-Sik;Jung, Goo-Bok;Kim, Min-Kyeong;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.237-242
    • /
    • 2002
  • A survey on four tributaries along with Mankyeong River was carried out to get the information far the water quality improvement and control. Typical paddy farming were major agricultural practices in Kosancheon and Soyangcheon. Iksancheon was livestock raising watershed. Chucheon was urban watershed. Water quality in six sites of main stream and four sites of tributaries in Mankyeong River were investigated from May to August in 2001. The concentration of nutrient in main stream of Mankyeong River were in the range of 3.78$\sim$12.68 mg/L for total nitrogen, 0.043$\sim$0.864 mg/L for total phosphorus, 2.59$\sim$13.29 mg/L for BOD and 12.9$\sim$119.5 mg/L for COD, respectively. Water quality of Mankyeong River mostly exceeded the standard water quality criteria of Korea. Major causes of water pollution were evaluated as sewage of swine and urban area. Among the four tributaries, water quality in agricultural practices, Kosancheon and Soyangcheon was relatively less polluted. While, the highest level of water pollution measured in Iksancheon was due to livestock. The water quality of Iksancheon and Chucheon was generally more polluted in the dry period than in rainy period.

Evaluation of Water Quality with BOD at Mankyeong and Dongjin River Basins (만경강 및 동진강 수계의 BOD에 의한 수질 평가)

  • Lee, Jong-Sik;Jung, Goo-Bok;Kim, Jin-Ho;Yun, Sun-Gang;Kim, won-Il;Shin, Jung-Du
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.81-84
    • /
    • 2004
  • Biological oxygen demand (BOD) as a stream water quality indicator was monitored monthly in the Mankyeong and Dongjin river basins from June 2001 to October 2002 to evaluate water qualitied as well as to get the information on the water quality management strategy in Semangeum reclamation areas. BOD in the Mankyeong river was 5.4mg/L in average during the survey and increased after the inflow of Iksan tributary, which was contaminated with livestock wastewater. BOD of Iksan tributary was maintained at 5.4 mg/L before joining the Wanggung tributary, however, that in the downstream was increased to 13.6 mg/L in average due to the inlet of the livestock wastewater. Meanwhile, BOD of Dongjin river was the average of 2.8 mg/L during the survey periods but it showed 3.5 mg/L when Jungeup tributary which was contaminated with sewage and industrial wastewater joined into the main stream. BOD in both Mankyeong and Dongjin rivers decreased in 2002 as compared to that in 2001.

The State and Sources of Contamination with BOD, COD, T-N and T-P in Stream Within Chonju City (전주시 하천의 BOD, COD,총질소, 총인에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;황갑수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.43-54
    • /
    • 2002
  • The Chonju and Samchun streams are palling though Chonju City and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joint to the Mankyeong River. The Chonju and Samchun streams are now contaminated with BOD, COD, T-N and T-P and the amounts of each contamination are increasing from upper stream to downstream. At the downstream the amounts of COD. T-N.T-P are several times higher than fifth grade of water quality thor lacustrine. Sewage from Chonju provides BOD, COD,T-N and T-P into the Chonju and Samchun streams and Chonju Waste Water Treatment Plant il a main source of COD, T-N and T-P contamination. Gosapyeong waste disposal site may be the source of BOD and COD contamination. T-N is higher than fifth grade of water quality for lacustrine at the upper stream indicationg that the rivers are contaminated with T-N before inflowing into Chonju by agricultural activity. The Chonju stream asffects the contamination of the Mankyeong river with BOD. COD, T-N,T-P. Other branch steams of the Mankyeong river also affects the contamination of the Mankyeong river by BOD, COD, T-N and T-P, Among the branch streams, the Ikasn stream is a main contamination source. Amounts of concentrations inflowing from the Chonju and Sanchun Streams on Aug. 1999 are calculated by using yeasured flow rate find concentrations of contaminants The result are as fikkiws; 1) the amounts of influent from the Gosan Stream are 0.49, 0.86, 1.61 and 0.01 ton/day for BOD, COD, T-N and T-P, respectively, 2) compared to the amounts of influent from the Gosan Stream, BOD, COD,T-N,T-P supplied from the Chonju river are higher by about 5, 7, 7. 36 times, respectively, and those supplied from the Iksan stream are higher by about 13, 10, 10, 147 times, respectively.

Assessment of Water Purification Plant Vegetation for Enhancement of Natural Purification in Mankyeong River (만경강 본류의 자연정화능 향상을 위한 식생학적 진단)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This study was conducted to get some information on plants abilities to enhance water purification and to find out away to conserve the ecosystem in Mankyeong river. Vegetation were surveyed at 4 sites pointing by 1:5,000 topographical map, from June 2001 through March 2002. T-N content in water were high in all sites of Mankyeong river, the average T-N levels were 8.59 and 17.23 mg/L, summer and winter, respectively. The average T-P level during summer was 0.47 mg/L but that was 1.79 mg/L during winter. The BOD level in Mankyeong upstream ranged from 0.95 to 2.57 mg/L which would be in I or II grade according to water quality criteria by Ministry of Environment but BOD level in Mankyeong downstream ranged from 6.87 to 9.72 mg/L. The plant species of river flora were found 251, 98 and 85, upstream midstream and down stream, respectively. Among the surveyed plants, Ceratophyllum demersum, submerged plant and Nuphar subinteperrimum took up higher contents of phosphate and nitrogen than other piano. The Phragmites communis and Zizania latifolia having much biomass were thought to be suitable plants for enhancement of e natural water purification.

The State and Sources of Contamination with Heavy Metals and Anion in Stream Within Chonju City (전주시 하천의 중금속과 음이온에 대한 수질현황 및 오염원)

  • 오창환;이지선;김강주;정성석;황갑수;이영엽
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.89-104
    • /
    • 2001
  • The Chonju and Samchun streams are passing though Chonju city and several contamination sources are located along these streams. The Samchun stream joins the Chonju stream in the Gosapyeong waste disposal site and the Chonju stream finally joins to the Mankyeong River. The objectives of this study are to determine the state and sources of contamination for heavy metals and anions in the Chonju and Samchun streams and to evaluate the effect of these streams on the contamination of the Mankyeong River. In order to select sampling locations, a stratified random sampling method was used. These streams was divided into several parts according to the expected contamination state, and samples were selected randomly from these parts. Generally, the water qualities of these streams were generally below the Drinking Water Level at the time of sampling in various heavy metals and anions. However, the levels of AI, Fe, $NH_{3}-N,Cl^{-}$, Cl- in these streams could be higher during dry season due to continuous inputs from various contamination sources. This study identified several contamination sources for these streams; two waste disposal sites along these streams for Fe, Mn, AI, Zn and $Cl^{-}$, the Chonju Waste Water Treatment Plant for Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NO_{2}N$, and $NH_{3}-N$ and the untreated sewages for AI, Zn, Mn, $Cl^{-}$, $SO_{4}S$, $NH_{3}-N$ and $PO_{4}^{2-}$. This study also revealed that the Chonju stream itself is an important contamination source for Fe, Mn, $Cl^{-}$ and $SO_{4}S$ in the Mankyung River.

  • PDF

Water Quality Improvement in the River through Reformation of Irrigation Water Supply Systems (관개용수 공급체계 변경을 통한 하천의 수질개선)

  • Lee, Kwang-Ya;Kim, Hae-Do;Lee, Jong-Nam;Park, Jong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.540-545
    • /
    • 2006
  • The objective of the study is to assess the water quality improvement resulted from the rearrangement of the irrigation water supply systems at Mankyeong River and Ansung Chun basin. There is a mixed type of watershed composed of urban and rural areas in the region. The water intake facilities for agricultural use such as reservoir, weir and pumping station are generally located at upstream river where the water quality maintains relatively clean. However, this study focuses on moving the water intake to downstream and rearranging the irrigation water supply system, then investigating how effective they are for water quality improvement in the river. When the water intake is moved downstream, the stream flow is increased as much as the amount of irrigation water that is to be taken upstream. The augmented flow which is frequently referred to as environmental flow can function as dilution water for improving the quality of polluted water that is originated from the wastewater in tributaries.

  • PDF

Species Diversity of Riparian Vegetation by Soil Chemical Properties and Water Quality in the Upper Stream of Mankyeong River (만경강 상류 수질 및 식생분포와 토양환경에 따른 하천식생의 종 다양성)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Lee, Deog-Bae;Kim, Jong-Gu;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.100-110
    • /
    • 2003
  • This study was conducted to evaluate influence of chemical properties in the riparian on the species diversity and to get plant information for enhancement of natural purification in Mankyeong River. The concentration of total nitrogen was high in Jeonju and Sam stream, while that of total nitrogen showed the highest peak in Winter. Concentrations of $NH_4-N$ was $0.01{\sim}0.06\;mg/L$ in Gosan and Soyang stream. The water quality of upstream along with Mankyeong River was suitable for the irrigation source. The riparian vegetation was investigated by Zurich-Montpellier school's method from June, 2001 to September, 2002. The number of riparian plants were 59 families, 129 genera, 165 species, 20 varieties in Gosancheon, on the while 53 families, 111 genera, 141 species, 19 varieties in Soyangcheon. The number of riparian plants in Bari basin was higher than that of other sites namely, 73 families, 134 genera, 218 species, 33 varieties. Riparian vegetation was consisted of 12 plant communities. The contents of organic matter, total nitrogen and electrical conductivity had negative relationship with species diversity (Species richness index, Heterogeneity index, Species evenness index Species number). On the while, species diversity had positive relationship with soil pH. Species diversify of the plant communities were affected by topography and disturbance.