• Title/Summary/Keyword: Mangroves

Search Result 23, Processing Time 0.021 seconds

Mangrove Height Estimates from TanDEM-X Data (TanDEM-X 자료를 활용한 망그로브 식생 높이 측정)

  • Lee, Seung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.325-335
    • /
    • 2020
  • Forest canopy height can be used for estimate of above-ground forest biomass (AGB) by means of the allometric equation. The remote locations and harsh conditions of mangrove forests limit the number of field inventory data stations needed for large-scale modeling of carbon and biomass dynamics. Although active and passive spaceborne sensors have proven successful in mapping mangroves globally, the sensors generally have coarse spatial resolution and overlook small-scale features. Here we generate a 12 m spatial resolution mangrove canopy height map from TanDEM-X data acquired over the world largest intact mangrove forest located in the Sundarbans. With single-pol. TanDEM-X data from 2011 to 2013, the proposed technique makes use of the fact that the double-bounce scattering that occurs between the water and mangrove trees yields water surface level elevation over mangrove forest areas, thus allowing us to estimate forest height with the assumption of an underlying flat topography. Our observations have led to a large-scale mangrove canopy height map over the entire Sundarbans region at a 12 m spatial resolution. Our canopy height estimates were validated with ground measurements acquired in 2015, a correlation coefficient of 0.83 and a RMSE of 0.84 m. With globally available TanDEM-X data, the technique described here will potentially provide accurate global maps of mangrove canopy height at 12 m spatial resolution and provide crucial information for understanding biomass and carbon dynamics in the mangrove ecosystems.

Analysis of blue carbon storage research trends and consideration for definitions of blue carbon: A review (블루카본 저장 연구 동향 분석 및 블루카본의 정의에 대한 고찰: 리뷰)

  • Kyeong-deok Park;Dong-hwan Kang;Won Gi Jo;Jun-Ho Lee;Hoi Soo Jung;Man Deok Seo;Byung-Woo Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.82-91
    • /
    • 2024
  • In this study, research cases related to blue carbon storage were collected and analyzed, and various definitions of blue carbon were considered in terms of spatiotemporal scope and scientific aspect. 444 papers were selected as research cases related to blue carbon storage, and analysis of the number of papers published by year/country and keywords was performed. Publication of papers related to blue carbon storage has continued to increase since 2011, and more than 50 papers have been published annually since 2018. The most publications by country were in Australia with more than 100 papers, and the United States and China also published more than 60 papers. Key terms related to "natural environment" and "storage characteristics" were analyzed in the sentences defined in the 23 papers that presented the definition of blue carbon. The natural environments where blue carbon was stored were mostly mangroves, salt marshes, and seagrass beds, and blue carbon repository included sediments and even plants themselves. The existing definition of blue carbon focused on the vegetation environment as the storage environment for blue carbon. However, since blue carbon is stored in the sediments of coastal wetlands, it would be appropriate to define the coastal ecosystem, including non-vegetated mudflats, as the storage environment for blue carbon.

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.