Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.2.2.8

Mangrove Height Estimates from TanDEM-X Data  

Lee, Seung-Kuk (Department of Earth and Environmental Sciences, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.36, no.2_2, 2020 , pp. 325-335 More about this Journal
Abstract
Forest canopy height can be used for estimate of above-ground forest biomass (AGB) by means of the allometric equation. The remote locations and harsh conditions of mangrove forests limit the number of field inventory data stations needed for large-scale modeling of carbon and biomass dynamics. Although active and passive spaceborne sensors have proven successful in mapping mangroves globally, the sensors generally have coarse spatial resolution and overlook small-scale features. Here we generate a 12 m spatial resolution mangrove canopy height map from TanDEM-X data acquired over the world largest intact mangrove forest located in the Sundarbans. With single-pol. TanDEM-X data from 2011 to 2013, the proposed technique makes use of the fact that the double-bounce scattering that occurs between the water and mangrove trees yields water surface level elevation over mangrove forest areas, thus allowing us to estimate forest height with the assumption of an underlying flat topography. Our observations have led to a large-scale mangrove canopy height map over the entire Sundarbans region at a 12 m spatial resolution. Our canopy height estimates were validated with ground measurements acquired in 2015, a correlation coefficient of 0.83 and a RMSE of 0.84 m. With globally available TanDEM-X data, the technique described here will potentially provide accurate global maps of mangrove canopy height at 12 m spatial resolution and provide crucial information for understanding biomass and carbon dynamics in the mangrove ecosystems.
Keywords
Mangrove; TanDEM-X; Canopy Height; AGB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen, 2010. Carbon-rich tropical mangroves and climate mitigation in a time of rising seas, Nature Geosciences, 4: 293-297.
2 Fatoyinbo, T. E. and M. Simard, 2013. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM, International Journal of Remote Sensing, 34(2): 668-681.   DOI
3 Fatoyinbo, T. E., M. Simard, R. A. Washing-Allen, and H. H. Shugart, 2008. Landscape-scale extent, height, biomass, and carbon estimation of Mozambique's mangrove forests with Landsat ETM+ and Shuttle Radar Topography Mission elevation data, Journal of Geophysical Research, 113: G02S06.
4 Food and Agriculture Organization of the United Nations (FAO), 2007. The World's Mangroves 1980-2005, FAO Forestry Paper 153, FAO, Rome, Italy.
5 Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, and N. Duke, 2011. Status and distribution of mangrove forests of the world using earth observation satellite data, Global Ecology and Biogeography, 20(1): 154-159.   DOI
6 Hajnsek, I., F. Kugler, S.-K. Lee, and K. P. Papathanassiou, 2009. Tropical-Forest-Parameter Estimation by means of Pol-InSAR: The INDREX II Campaign, IEEE Transactions on Geoscience and Remote Sensing, 47(2): 481-493.   DOI
7 INFOTERRA, 2008. Radiometric Calibration of Terra SAR-X Data: Beta Naught and Sigma Naught Coefficient Calculation, Airbus Defence and Space, Friedrichshafen, Germany.
8 Krieger, G., A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink, 2007. TanDEM-X: A staellite formation for high-resolution SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3317-3341.   DOI
9 Cloude, S. R., 2010. Polarisation: Applications in Remote Sensing, Oxford University Press, London, U.K.
10 Lee, S.-K., F. Kugler, K. P. Papathanassiou, and I. Hajnsek, 2012. Quantification of temporal decorrelation effects at L-band for polarimetric SAR interferometry applications, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3): 1351-1367.   DOI
11 Rahman, M., N. I. Khan, A. K. Fazlul Hoque, and I. Ahmed, 2015 Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones, Wetland Ecology and Management, 23(2): 269-283.   DOI
12 Lee, S.-K. and T.E. Fatoyinbo, 2015. TanDEM-X Pol-InSAR Inversion for Mangrove Canopy Height Estimation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(7): 3608-3618.   DOI
13 Papathanassiou, K. P. and S. R. Cloude, 2001. Single baseline Polarimetric SAR Interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(11): 2352-2363.   DOI
14 Pendleton, L., D. C. Donato, B. C. Murray, S. Crooks, W. A. Jenkins, S. Sifleet, C. Craft, J. W. Fourqurean, J. B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera, 2012. Estimating global "blue carbon" emissions from conversion and degradation of vegetated coastal ecosystems, PLoS One, 7(9): e43542.   DOI
15 Schneider, R. Z., K. P. Papathanassiou, I. Hajnsek, and A. Moreira, 2006. Polarimetric and Interferometric Characterization of Coherent Scatterers in Urban Areas, IEEE Transactions on Geoscience and Remote Sensing, 44(4): 971-984.   DOI
16 Treuhaft, R. N., S. N. Madsen, M. Moghaddam, and J. J. van Zyl, 1996. Vegetation characteristics and underlying topography from interferometric radar, Radio Science, 31(6): 1449-1495.   DOI
17 Zink, M., M. Bachmann, B. Brautigam, T. Fritz, I. Hajnsek, G. Krieger, A. Moreira, and B. Wessel, 2014. TanDEM-X: The New Global DEM Takes Shape, IEEE Geoscience and Remote Sensing Magazine, 2(2): 8-23.   DOI
18 Cloude, S. R. and K. P. Papathanassiou, 2003. Three-stage inversion process for polarimetric SAR interferometry, IEE Proceedings-Radar Sonar and Navigation, 150(3): 125-134.   DOI
19 Cook, B. D., L. A. Corp, R. F. Nelson, E. M. Middleton, D. C. Morton, J. T. McCorkel, J. G. Masek, K. J. Ranson, V. Ly, and P. M. Montesano, 2013. NASA Goddard's lidar, hyperspectral and thermal(G-LiHT) airborne imager, Remote Sensing, 5(8): 4045-4066.   DOI