• Title/Summary/Keyword: Manganese acetate

Search Result 40, Processing Time 0.022 seconds

Effects of $LiMn_{2}O_{4}$ Addition on $CO_{2}$ Decomposition Using Spinel Phase $Fe_{3}O_{4}$ (스피넬상 $Fe_{3}O_{4}$를 이용한 $CO_{2}$ 분해에서 $LiMn_{2}O_{4}$ 첨가효과)

  • Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2001
  • The spinel $Fe_{3}O_{4}$ powders were synthesized using 0.2 $M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by oxidation in air and the spinel $LiMn_{2}O_{4}$ powders were synthesized at 480 $^{\circ}C$ for 12 h in air by a sol-gel method using manganese acetate and lithium hydroxide as starting materials. The synthesized $LiMn_{2}O_{4}$ powders were mixed at portion of 5, 10, 15 and 20 wt% of $Fe_{3}O_{4}$ powders using a ball-mill. The mixed catalysts were dried at room temperature for 24 hrs. The mixed catalysts were reduced by hydrogen gas at 350 $^{\circ}C$ for 2 h. The carbon dioxide decomposition rates of the mixed catalysts were 90% in all the mixed catalysts but the decomposition rate of carbon dioxide was increased with adding $LiMn_{2}O_{4}$ powders to $Fe_{3}O_{4}$ powders.

Synthesis, Structure and Magnetic Properties of Mn12 Single Molecule Magnet Containing 4-(Methylthio)benzoate as Peripheral Ligands

  • Lim, Jin-Mook;Do, Young-Kyu;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1065-1070
    • /
    • 2005
  • $[Mn_{12}O_{12}(O_2CPh-4-SMe)_{16}(H_2O)_4]{\cdot}7CH_2Cl_2$ (1), a new single-molecule magnet complex has been successfully synthesized by substitution of acetate ligand of Mn12ac with 4-(methylthio)benzoic acid. Complex 1 crystallizes into triclinic P$\overline{1}$ with a = 18.321(3) $\AA$, b = 19.011(3) $\AA$, c = 27.230(4) $\AA$, $\alpha$ = 86.973(3)$^{\circ}$, $\beta$ = 76.919(3)$^{\circ}$, $\gamma$ = 87.613(3)$^{\circ}$, and Z = 2. In complex 1, one Mn(III) ion has an abnormal Jahn-Teller elongation axis oriented at an oxide ion. Complex 1 has two out-of-phase ac susceptibility peaks in the 2-4 K and 4-7 K regions. Effective anisotropy energy barrier and pre-exponential factor are $U_{eff}$ = 45.95 K, 1/$\tau$0 = 8.6 ${\times}\;10^9s^{-1}\;for\;{\chi}_M$'' peaks in the lower temperature region and $U_{eff}$ = 59.45 K, 1/$\tau_0$ = 2.2 ${\times}\;10^8\;s^{-1}$ for $\chi_M$'' peaks in the higher temperature region. The parameters of S = 10, g = 1.87, D = -0.40 $cm^{-1}$, and E = 0.00034 $cm^{-1}$ were obtained from the M/N${\mu}_B$ vs. H/T plot of complex 1.

Development of a Novel Medium with Chinese Cabbage Extract and Optimized Fermentation Conditions for the Cultivation of Leuconostoc citreum GR1 (폐배추 추출물을 이용한 Leuconostoc citreum GR1 종균 배양용 최적 배지 및 배양 조건 개발)

  • Moon, Shin-Hye;Chang, Hae-Choon;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1125-1132
    • /
    • 2013
  • In the kimchi manufacturing process, the starter is cultured on a large-scale and needs to be supplied at a low price to kimchi factories. However, current high costs associated with the culture of lactic acid bacteria for the starter, have led to rising kimchi prices. To solve this problem, the development of a new medium for culturing lactic acid bacteria was studied. The base materials of a this novel medium consisted of Chinese cabbage extract, a carbon source, a nitrogen source, and inorganic salts. The optimal composition of this medium was determined to be 30% Chinese cabbage extract, 2% maltose, 0.25% yeast extract, and $2{\times}$ salt stock (2% sodium acetate trihydrate, 0.8% disodium hydrogen phosphate, 0.8% sodium citrate, 0.8% ammonium sulfate, 0.04% magnesium sulfate, 0.02% manganese sulfate). The newly developed medium was named MFL (medium for lactic acid bacteria). After culture for 24 hr at $30^{\circ}C$, the CFU/mL of Leuconostoc (Leuc.) citreum GR1 in MRS and MFL was $3.41{\times}10^9$ and $7.49{\times}10^9$, respectively. The number of cells in the MFL medium was 2.2 times higher than their number in the MRS media. In a scale-up process using this optimized medium, the fermentation conditions for Leuc. citreum GR1 were tested in a 2 L working volume using a 5 L jar fermentor at $30^{\circ}C$. At an impeller speed of 50 rpm (without pH control), the viable cell count was $8.60{\times}10^9$ CFU/mL. From studies on pH-stat control fermentation, the optimal pH and regulating agent was determined to be 6.8 and NaOH, respectively. At an impeller speed of 50 rpm with pH control, the viable cell count was $11.42{\times}10^9(1.14{\times}10^{10})$ CFU/mL after cultivation for 20 hr - a value was 3.34 times higher than that obtained using the MRS media in biomass production. This MFL media is expected to have economic advantages for the cultivation of Leuc. citreum GR1 as a starter for kimchi production.

Protein kinase C beta II upregulates intercellular adhesion molecule-1 via mitochondrial activation in cultured endothelial cells

  • Joo, Hee Kyoung;Lee, Yu Ran;Choi, Sunga;Park, Myoung Soo;Kang, Gun;Kim, Cuk-Seong;Jeon, Byeong Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • Activation of protein kinase C (PKC) is closely linked with endothelial dysfunction. However, the effect of $PKC{\beta}II$ on endothelial dysfunction has not been characterized in cultured endothelial cells. Here, using adenoviral $PKC{\beta}II$ gene transfer and pharmacological inhibitors, the role of $PKC{\beta}II$ on endothelial dysfucntion was investigated in cultured endothelial cells. Phorbol 12-myristate 13-acetate (PMA) increased reactive oxygen species (ROS), p66shc phosphorylation, intracellular adhesion molecule-1, and monocyte adhesion, which were inhibited by $PKC{\beta}i$ (10 nM), a selective inhibitor of $PKC{\beta}II$. PMA increased the phosphorylation of CREB and manganese superoxide dismutase (MnSOD), which were also inhibited by $PKC{\beta}i$. Gene silencing of CREB inhibited PMA-induced MnSOD expression, suggesting that CREB plays a key role in MnSOD expression. Gene silencing of $PKC{\beta}II$ inhibited PMA-induced mitochondrial ROS, MnSOD, and ICAM-1 expression. In contrast, overexpression of $PKC{\beta}II$ using adenoviral $PKC{\beta}II$ increased mitochondrial ROS, MnSOD, ICAM-1, and p66shc phosphorylation in cultured endothelial cells. Finally, $PKC{\beta}II$-induced ICAM-1 expression was inhibited by Mito-TEMPO, a mitochondrial ROS scavenger, suggesting the involvement of mitochondrial ROS in PKC-induced vascular inflammation. Taken together, the results suggest that $PKC{\beta}II$ plays an important role in PMA-induced endothelial dysfunction, and that the inhibition of $PKC{\beta}II$-dependent p66shc signaling acts as a therapeutic target for vascular inflammatory diseases.

Morphology of RF-sputtered Mn-Coatings for Ti-29Nb-xHf Alloys after Micro-Pore Form by PEO

  • Park, Min-Gyu;Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.197-197
    • /
    • 2016
  • Commercially pure titanium (CP Ti) and Ti-6Al-4V alloys have been widely used for biomedical applications. However, the use of the Ti-6Al-4V alloy in biomaterial is then a subject of controversy because aluminum ions and vanadium oxide have potential detrimental influence on the human body due to vanadium and aluminum. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Manganese(Mn) plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. Radio frequency(RF) magnetron sputtering in the various PVD methods has high deposition rates, high-purity films, extremely high adhesion of films, and excellent uniform layers for depositing a wide range of materials, including metals, alloys and ceramics like a hydroxyapatite. The aim of this study is to research the Mn coatings on the micro-pore formed Ti-29Nb-xHf alloys by RF-magnetron sputtering for dental applications. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. Mn coatings was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Mn coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

The Synthesis of LiMn$_2$O$_4$by sol-gel method and properties as electrode materials for lithium secondary battery (Sol-Gel 법에 의한 LiMn$_2$O$_4$의 합성 및 리튬이차전지용 전극물질로의 특성)

  • 이진식;박용성;우제완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • The spinel structured $LiMn_2O_4$was obtained by two consecutive heat treatment on xerogel; the first heat treatment was at $150^{\circ}C$ and the second at $350^{\circ}C$ was obtained by sol-gel process using an aqueous solution of lithium hydroxide and manganese acetate. The synthesized $LiMn_2O_4$ by the sol-gel process showed a discharge capacity of 88~56 mAh/g after 15 cycles in Li/lM $LiClO_4$(in PC)/$LiMn_2O_4$at a current density of 0.25 mA/$\textrm{cm}^2$ and the voltage ranged 3.5 V to 4.3 V. For the second heat treatment above $350^{\circ}C$, $Mn_2O_3$was formed as a by-product during the synthesis of $LiMn_2O_4$. The heat treatment at $500^{\circ}C$, for example, showed a lower discharge capacity 81~47 mAh/g, after the 15 charge/discharge cycles. The lower capacity was due to the increment of $Mn^{3+}$ ion and this phenomenon was in agreement with the Jahn-Teller distortion.

  • PDF

The Optimum of $CO_2$ Decomposition using Spinel Phase $Li{Mn_2}{O_4}$ (스피넬상 $Li{Mn_2}{O_4}$를 이용한 $CO_2$ 분해의 최적조건)

  • Lee, Dong-Suek;Rim, Byung-O;Yang, Chun-Hoe;Lee, Poong-Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.894-900
    • /
    • 2001
  • The spinel $Li{Mn_2}{O_4}$ catalysts for $CO_2$ decomposition were synthesized by a sol-gel method using manganese acetate and lithium hydroxide as starting materials through drying at $150^{\circ}C$ for 12 hrs under oxygen atmosphere followed by heat treatment at $480^{\circ}C$ for 12 hrs. The synthesized $Li{Mn_2}{O_4}$ were reduced by hydrogen for 3 hrs at various temperatures and the decomposition rate of carbon dioxide was investigated at 300, 325, 350, 375 and $400^{\circ}C$ using the $Li{Mn_2}{O_4}$ reduced by hydrogen gases. As a result of experiment, the optimum temperature of hydrogen reduction and $CO_2$ decomposition was shown $350^{\circ}C$. The physicochemical properties of the spinel $Li{Mn_2}{O_4}$ the reduced $Li{Mn_2}{O_4}$ and the $Li{Mn_2}{O_4}$ after $CO_2$ decomposition were examined with XRD, SEM and TGA.

  • PDF

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Study on the production of porous CuO/MnO2 using the mix proportioning method and their properties (반응몰비에 따른 다공성 CuO/MnO2의 제조 및 특성 연구)

  • Kim, W.G.;Woo, D.S.;Cho, N.J.;Kim, Y.O.;Lee, H.S.
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.182-186
    • /
    • 2015
  • In this study, the porous CuO/MnO2 catalyst was prepared through the co-precipitation process from an aqueous solution of potassium permanganate (KMnO4), manganese(II) acetate (Mn(CH3COO)2·4H2O) and copper(II) acetate (Cu(CH3COO)2·H2O). The phase change in MnO2 was analyzed according to the reaction molar ratio of KMnO4 to Mn(CH3COO)2. The reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O was varied at 0.3:1, 0.6:1, and 1:1. The aqueous solution of Cu(CH3COO)2 was injected into a mixed solution of KMnO4 and Mn(CH3COO)2 to 10~75 wt% relative to MnO2. The Cu ion co-precipitates as CuO with MnO2 in a highly dispersed state on MnO2. The physicochemical property of the prepared CuO/MnO2 was analyzed by using the TGA, DSC, XRD, SEM, and BET. The different phase types of MnO2 were prepared according to the reaction mole ratio of KMnO4 to Mn(CH3COO)2·4H2O. The results confirmed that the porous CuO/MnO2 catalyst with γ-phase MnO2 was produced in the reaction mole ratio of KMnO4 to Mn(CH3COO)2 as 0.6:1 at room temperature.

Adherence-induced gene expression in human alveolar macrophages (표면부착에 의한 사람 폐포대식세포의 유전자 발현에 관한 연구)

  • Chung, Man Pyo;Yoo, Chul Gyu;Han, Sung Koo;Shim, Young-Soo;Rhee, Chong H.;Han, Yang Chol;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.936-944
    • /
    • 1996
  • Background: Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. Adhesion molecules and gene transcription of the inflammatory mediators are known to be associated in this process. To evaluate whether adhesion molecule and transcriptional activation of the inflammatory substances are also involved in the activation of human alveolar macrophage by the adherence procedure, we designed this experiment. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be nonnal by chest cr and alveolar macrophage was harvested. To measure the expression of Interleukin-8(IL-8) mRNA, manganese superoxide dismutase(SOD) mRNA and CD11/CD18 mRNA in human alveolar macrophage of both adherence state and suspension state, Northern blot analysis was done at 0, 2, 4, 8 and 24hrs after the adherence to plastic surface and during suspension state. Then, phorbol myristate acetate(pMA) and N-formyl-methionyl-leucyl-phenylalanine(fMLP) were added respectively in the same experimental condition. Result : 1) Human alveolar macrophages in the adherent state induced IL-8 mRNA and SOD mRNA expression which was maximal at 8 hours after the adherence to plastic surface. But we could not observe the upregulation of CD18 mRNA by surface adherence. 2) PMA induced these mRNA expression both in the adherent cell and the nonadherem cells, but the induction of mRNA expression by fMLP occurred only in the adherent cells. Conclusion: These results suggest that adherence of huamn alveolar macropahge is an important cell-activating event that may play a critical role in the modulation of lung inflammatory respones.

  • PDF