• Title/Summary/Keyword: Maneuvering Area

Search Result 65, Processing Time 0.024 seconds

Ship Collision Avoidance Support Model in Close Quarters Situation (II) (근접상황 선박충돌회피지원모델에 관한 연구(II))

  • Yang Hyoung-Seon;Yea Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.827-832
    • /
    • 2005
  • In this paper, as a fundamental study of ship collision avoidance supporting system in close quarters situation, we propose ship collision avoidance support model for decreasing ship collision accidents those have occurred due to navigator's unsuitable maneuvering in close encounter. This model will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity.

Analysis of the Design of Rudder Area Ratio for Domestic Fishing Vessel (국내어선 타면적비 설계현황 분석연구)

  • KIM, Min-Ryong;Woo, Donghan;IM, Nam-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2022
  • A total of 97,623 ships were registered in Korea in 2019. Among these, 65,835 vessels, accounting for approximately 67 % of the total number of ships, were registered as fishing vessels. As with the proportion of fishing vessels, the frequency of marine accidents is also high. In 2020, 2,331 of 3,535 accidents occurred on fishing vessels. Hence, various institutional arrangements are required for improving the safety of domestic fishing vessels. In this study, we examined domestic and international regulations on domestic and foreign control performance related to fishing boats for improving the safety of fishing boats. Additionally, the ratio of the rudder area of 153 fishing boats operating in Korea was investigated to examine the current status of the rudder area design of fishing boats whose design standards have not been clearly established compared to fishing boats. Resultantly, we statistically confirmed that most fishing boats were designing rudder areas because they did not meet international standards. In the future, these analysis results can be used as basic data to prepare rudder area design standards for improving the maneuvering performance of domestic fishing boats.

The Tactical review of the Battle of Tsushima - with focus on disposition & maneuver, and damage control - (쓰시마 해전의 전술적 재조명 - 배진과 기동, 손상통제를 중심으로 -)

  • Lee, Chang Hyun
    • Strategy21
    • /
    • s.44
    • /
    • pp.213-253
    • /
    • 2018
  • The Russo-Japanese War(1904-1905) in the early 20th century greatly influenced the international politics in Northeast Asia and the destiny of both countries. There are many studies on the cause of the outbreak and its effect on the Korean peninsula. The victory and defeat of the battle of Tsushima also the subject of research by renowned scholars and navy officers. Many previous studies have analyzed the process of engagement. However, There was a lack of research that analyzed at the tactical level of naval commanders. Therefore, this study tries to review the battle of Tsushima in terms of tactical level, that is formation, maneuvering, damage control. Naval operations at sea with many variables are not always done as planned. The intuitive judgement and readiness have had a decisive impact on victory and defeat. The analysis of the naval warfare on the basis of formation, maneuvering, and damage control makes the cause of the win more clearly. The conclusion of the this study can be summarized in five ways. First, victory would be achieved through the suppression of the beginning. The destiny of the Tsushima battle was determined by an 1 hour after first firing. The Japanese fleet caught fire by paralyzing the command and control capabilities of the Russian fleet. Second, the Japanese fleet's power was superior to the Russian fleet. In general, Japan and Russia had similar powers, and Admiral Togo's "T crossing tactics" decisively contributed the victory. However, when compared to the weapon system level, formation and maneuvering, Japan was much more dominant. Third, people realized that one side to be annihilated in the battle between similar powers after the Tsushima battle. The common perception before the Battle of Tsushima was that the battle ship would not sunken, and that the result of wiping out was difficult. However, there is s time for one sided victory and defeat depending on the early suppression nad the destruction of the command and control ability. Fourth, it is the importance of damage control ability. The main cause of the Russian fleet's loss of command and control ability was thick smoke from fire, and maneuverability was greatly deteriorated due to coal overload. In this way, importance is still valid after more than 100 tears. Fifth, the area of uncertainty. In the navy battles, one or two shots of clear firing in the beginning and small misconception and minor mistakes decide win or loss. Ultimately, this area of fortune can be linked to mindset of the commander. I hope this research will be help to naval researchers and naval commanders at the sea.

A Study on Development of Ship Collision Avoidance Support Program (선박충돌회피지원프로그램 개발에 관한 연구)

  • Yang Hyoung-Seon;Jeong Dae-Deuk
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.15-20
    • /
    • 2005
  • Recently, ship collision accidents account for $20\%\∼30\%$ of domestic marine accidents, also have increased continually. In this paper, therefore we propose the development of Ship Collision Avoidance Support program for decreasing ship collision accidents. This program has been developed on the basis of CCAS-Model. A CCAS-Model has ship's maneuvering performance and has studied for the propose of supporting to avoid ship collision in close quarters. Besides, the program will effectively support maneuvering for collision avoidance through displaying the feasible area and the method of collision avoidance using own ship's turning characteristic about action of target ship's keeping course and velocity in various encounter.

  • PDF

Real-time Simulation of Seas and Swells for Ship Maneuvering Simulators (선박운항 시뮬레이터를 위한 풍파와 너울의 실시간 시뮬레이션)

  • Park, Sekil;Oh, Jaeyong;Park, Jinah
    • Journal of KIISE
    • /
    • v.42 no.7
    • /
    • pp.846-851
    • /
    • 2015
  • Seas and swells are basic wave types in ocean surface simulation and are very important elements in the simulation of ocean background. In this paper, we propose a real-time simulation method, for reproducing realistic seas and swells, to be used in real-time simulators such as ship maneuvering simulators. Seas and swells have different visual properties. Swells have relatively longer wavelengths and round crests compared with seas, therefore they are visualized globally with large meshes and procedural methods. Parameters to illustrate swells are extracted from ocean wave spectra. Conversely, seas have shorter wavelengths and their characteristics are only clearly apparent near to the observation point. Here, we present visualization of seas based on a statistical wave model using ocean wave spectra, which provides realistic results in a reactively small area.

The Effect of Hull Appendages on Maneuverability of Naval Ship by Sensitivity Analysis (민감도 해석을 통한 선체 부가물이 함정의 조종성능에 미치는 영향 분석)

  • Kim, Dae Hyuk;Rhee, Key-Pyo;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • Naval ships have hull appendages which are more exposed to the outside because of its small block coefficient compared with commercial ships. These exposed hull appendages like skeg, strut and shaft line affect the maneuverability of a ship. The effect of hull appendages has considered at initial design stage to estimate more accurate maneuverability. In this paper, sensitivity analysis is used to analyze the effect on maneuverability by hull appendages. 3 DOF maneuvering equations based on Mathematical Modelling Group (MMG) model are used and propeller & rudder model are modified to reflect the characteristics of twin propeller & twin rudder. Numerical maneuvering simulations (Turning test, Zig-zag test) for benchmark naval vessel, David Taylor Model Basin (DTMB) 5415 are performed. In every simulation, it is calculated that stability indices and maneuverability characteristics (Tactical Dia., Advance, 1st Overshoot, Time of complete cycle) with respect to the parameters (area times lift coefficient slope, attachment location) of hull appendages. As a result, two regression formulas are established. One is the relation of maneuverability characteristics and stability indices and the other is the relation of stability indices and hull appendages.

Development of a safe operation capability chart as the design basis of a rudder area

  • You, Youngjun;Kim, Sewon;Kim, Woojin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.529-544
    • /
    • 2018
  • Ship owners now demand a new design approach for the rudder that considers detailed design information such as maneuverability and environmental loads etc. on a quantified basis. In this paper, we developed the concept of a safe operation capability chart for the design of a rudder area. The chart can be used as the basis of design considering the maneuverability and environmental loads. To confirm the applicability of the safe operation capability chart for use as the basis of design, four different rudders are assumed in this work. First, it is determined whether or not it is appropriate to design a rudder by applying a conventional design approach based on IMO maneuvering tests. The proposed concept is reviewed for use as the basis of the design by investigating the effect of rudder area on capability charts that are plotted according to the rudder under various environmental conditions.

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

A Study on Heuristic Berthing System Design with Winch and Damper Assistance

  • Kim, Young-Bok;Kim, Chang-Woo;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.20-27
    • /
    • 2018
  • Vessel maneuvering problem in the harbor area is generating considerable interests in terms of marine cybernetics. In this sense, the vessel is operated and moves at ultimately low or zero speed in shallow water area. So the vessel is usually aided by the cooperation with thrusters, main propulsion system, tugboats and pilots, etc. In this paper, we suggest a new vessel berthing technique using dampers and winches as a solution for excessively complicate and dangerous berthing work. In the proposed berthing method, in order to manipulate the actuators (winches and dampers), a simple and heuristic control strategy is applied for a basic experiment. Finally, experiments are conducted to verify the effectiveness of the proposed automatic vessel berthing strategy based on the heuristic control method.