• 제목/요약/키워드: Management processing

검색결과 5,995건 처리시간 0.031초

검색어 빈도 데이터를 반영한 코로나 19 확진자수 예측 딥러닝 모델 (Predicting the Number of Confirmed COVID-19 Cases Using Deep Learning Models with Search Term Frequency Data)

  • 정성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.387-398
    • /
    • 2023
  • 코로나 19 유행은 인류 생활 방식과 패턴에 큰 영향을 주었다. 코로나 19는 침 방울(비말)은 물론 공기를 통해서도 감염되기 때문에 가능한 대면 접촉을 피하고 많은 사람이 가까이 모이는 장소는 피할 것을 권고하고 있다. 코로나 19 환자와 접촉했거나 코로나 19 환자가 발생한 장소에 있었던 사람이 코로나 19에 감염되었을 것을 염려한다면 구글에서 코로나 19 증상을 찾아볼 것이라고 충분히 예상해 볼 수 있다. 본 연구에서는 과거 독감 감시와 관리에 중요 역할을 했었던 구글 트렌드(Google Trends)를 다시 소환하고 코로나 19 확진자수 데이터와 결합하여 미래의 코로나 19 확진자수를 예측할 수 있을지 딥러닝 모델(DNN & LSTM)을 사용한 탐색적 데이터 분석을 실시하였다. 특히 이 연구에 사용된 검색어 빈도 데이터는 공개적으로 사용할 수 있으며 사생활 침해의 우려도 없다. 심층 신경망 모델(DNN model)이 적용되었을 때 한국에서 가장 많은 인구가 사는 서울(960만 명)과 두 번째로 인구가 많은 부산(340만 명)에서는 검색어 빈도 데이터를 포함하여 예측했을 때 더 낮은 오류율을 기록했다. 이와 같은 분석 결과는 검색어 빈도 데이터가 일정 규모 이상의 인구수를 가진 도시에서 중요한 역할을 할 수 있다는 것을 보여주는 것이다. 우리는 이와 같은 예측이 더 강력한 예방 조치의 실행이나 해제 같은 정책을 결정하는데 근거 자료로 충분히 사용될 수 있을 것으로 믿는다.

부동산 유동화 NFT와 FT 분할 거래 시스템 설계 및 구현 (Real Estate Asset NFT Tokenization and FT Asset Portfolio Management)

  • 김영근;김성환
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.419-430
    • /
    • 2023
  • 대체 불가능 토큰 (NFT: non-fungible Token)은 분할할 수 없다는 고유한 특징을 가지고 있다. 현재 NFT는 디지털 콘텐츠에 대한 소유권 증명 이상의 용도가 명확하지 않고, 토큰의 유동성이 거의 없으며, 이로 인한 가격의 예측이 어렵다. 현실에서의 부동산은 대개 가격이 매우 높은 특징으로 인해 투자 진입장벽이 매우 높다. 현물 부동산을 NFT 화하고, FT (fungible token)으로 분할하면 유동성의 증가, 접근성의 증가에 따른 투자자 커뮤니티 볼륨의 증가를 기대할 수 있다. 본 논문은 일반 투자자들이 개별적으로 구매하기 어려운 현물 부동산을 대량의 FT로 분할하고 이를 Black Litterman 모델 기반의 Portfolio 투자 인터페이스를 통해 투자할 수 있는 시스템을 설계하고 구현하였다. 이를 위해, 현물 부동산을 담보로 페깅하고, 보안적으로 안전한 블록체인인 NFT로 발행한다. 상시 변경되는 부동산 가격을 모니터링하기 위한 오라클을 사용하여, 외부 부동산 정보를 블록체인에 반영할 수 있도록 하였다. 현물 부동산 가격을 그대로 유지하고 있는 NFT를 낮은 가격의 대량 FT로 분할함으로써, 큰 유동성을 제공하고 가격 변동성 제한을 두었다. 이를 통해, 높은 가격으로 인해 투자하기 어려웠던 일반 소액 투자자들이 쉽게 투자할 수 있도록 하였다. 또한 소액 투자로 여러 개의 복수 현물 부동산에 투자하기 위한 효과적인 포트폴리오 구성을 위한 자산 포트폴리오 인터페이스를 구현하였다. 이는 Black Litterman 모델을 활용하여, 다수의 현물 부동산 NFT에 대한 투자 비율을 최적화할 수 있는 목적을 가진다. 전체 시스템은 Solidity 언어로 작성한 smart contract, Flask 웹 프레임워크, 공공데이터포털의 "국토교통부_아파트매매 실거래자료 Open API"를 활용하였다.

머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구 (A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques)

  • 최정열;한재민;안대희;정지승;김정호;이성진
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.685-690
    • /
    • 2023
  • 도시의 인구증가 및 고밀화에 따라 기존 지하구조물에 인접하여 대심도 굴착 공사 물량이 증가하는 추세인 것으로 분석되었다. 현재 지하구조물 및 궤도는 외부요인에 의해 지하구조물의 손상이 다수 발생되는 실정이며 터널 내의 계측결과로 원인을 분석하여 예방차원이 아닌 사후처리에 대해서 측정을 하고 있는 실정이다. 본 연구의 목적은 공용중인 도시철도 선로와 인접한 굴착공사에 따른 구조물의 변형에 미치는 영향을 분석하는 것이다. 또한 외적 요인으로 인해 지하구조물 및 궤도 손상 및 파괴가 발생하기 전 구조물의 변위를 머신러닝 기법을 통해 구조물의 안전성을 평가하고자 한다. 분석결과, 분석한 데이터세트에서 구조물관리기준치에 도달하는 시간을 예측하기에 적합한 모델은 다항회귀 머신러닝 알고리즘인 것으로 분석되었다. 그러나 본 연구에서 적용한 자동화계측 데이터에 한정될 수 있으므로 추가적으로 구조물 조건의 다양성과 데이터양을 늘리는 향후 연구가 필요하다.

실시간 뎅기열 관리를 위한 관제시스템 개발 (Development of a Real-Time Control & Management System with In-Vitro Diagnostic Medical Device for Dengue Fever)

  • 안창선;박용호;문정대;박종찬;서영곤;손유락;최윤종;하양화;정봉수;김영주
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권2호
    • /
    • pp.77-84
    • /
    • 2023
  • 뎅기열 발병은 전 세계 인구의 약 1/3이 거주하고 있는 열대, 아열대 기후에 집중되며, 우리나라도 아열대 기후로 바꾸고 있어 뎅기열 발병에 취약해지고 있다. 뎅기열은 감염병 관리 차원에서 진단 이력 관리가 중요하다. 감염병 이력에 따라서 지역별, 연령별, 남녀비율 등에 따라서 개개인의 치료 방법과 전략을 수립할 수 있는 체계가 필요하다. 본 논문에서는 뎅기열 관제시스템을 제안하며, 이러한 시스템은 뎅기열의 발병에 대한 체외진단기기를 이용한 실시간 집계방식으로 발병률과 사망률을 감소시킬 수 있는 전략을 수립하는 데 유용하게 활용될 수 있다. 뎅기열 관리를 위한 관제시스템 구성으로 형광면역진단 키트를 이용한 뎅기열 체외진단기기와 실시간 뎅기열 관제시스템으로 구성되어 있다. 본 논문으로 개발된 뎅기열 관제시스템은 향후 정부의 감염병 통합정보와 결합되어 다양한 감염병 관리 및 정책 활용을 위해서 활용될 수 있을 것이다.

Factors influencing farmed fish traders' intention to use improved fish post-harvest technologies in Kenya: application of technology acceptance model

  • Jimmy Brian Mboya;Kevin Odhiambo Obiero;Maureen Jepkorir Cheserek;Kevin Okoth Ouko;Erick Ochieng Ogello;Nicholas Otieno Outa;Elizabeth Akinyi Nyauchi;Domitila Ndinda Kyule;Jonathan Mbonge Munguti
    • Fisheries and Aquatic Sciences
    • /
    • 제26권2호
    • /
    • pp.105-116
    • /
    • 2023
  • Improved fish post-harvest technologies (IFPT) have been promoted as more efficient methods of fish processing, preservation, and value addition than the traditional methods prevalent in developing countries. The adoption rates, however, do not appear to be convincing. The purpose of this study was to determine the socio-demographic and psychological factors that influence intention of Kenyan farmed fish traders to use IFPT. The technology acceptance model (TAM) was used to properly explain the impact of TAM constructs such as perceived usefulness (PU), perceived ease of use (PEOU), and attitude (ATT), as well as socio-demographic factors such as gender, age, education level and fish trading experience on traders' intention to use the technologies. A cross-sectional survey was conducted to collect data using a semi-structured questionnaire from 146 traders in Busia, Siaya and Kakamega counties. At a significance level of p = 0.05, a linear regression model was used to examine the socio-demographic and psychological determinants of the traders' behavioral intention to use the improved technologies. The regression analysis revealed that PU (β = 0.443; p = 0.000), PEOU (β = 0.364; p = 0.000) and ATT (β = 0.615; p = 0.000) influence traders' intention to use IFPT, with ATT having the highest influence on intention. However, the traders' socio-demographic characteristics have no effect on their intention to use the technologies, as the coefficients for gender (β = 0.148; p = 0.096), age (β = 0.016; p = 0.882), level of education (β = -0.135; p = 0.141) and fish trading experience (β = 0.017; p = 0.869) are all insignificant. These findings show that the traders intend to use IFPT and will use them when it is in their best economic interests.

농업용 저수지 CCTV 영상자료 기반 수위 인식 모델 적용성 검토 (A study on the application of the agricultural reservoir water level recognition model using CCTV image data)

  • 권순호;하창용;이승엽
    • 한국수자원학회논문집
    • /
    • 제56권4호
    • /
    • pp.245-259
    • /
    • 2023
  • 농업용 저수지는 농업용수 공급에 있어서 매우 중요한 생산기반시설로, 우리나라 농업용수의 60% 정도를 공급하고 있다. 다만, 여러 문제로 인해 농업용수의 효율적인 공급에 어려움이 발생하고 있으며, 효과적인 공급 및 관리 체계 구현을 위한 정확한 실시간 저수위 혹은 저수량 추정이 필요하다. 본 연구에서는 영상정보를 활용한 딥러닝 기반 농업용 저수지 수위 인식 모델을 제안하였다. 개발한 모델은 (1) CCTV 영상정보 자료 수집 및 분석, (2) U-Net 이미지 분할 방법을 통한 입력 자료 생성, 그리고 (3) CNN과 ResNet 모델을 통한 수위 인식 세 단계로 구성된다. 모델은 두 농업용 저수지(G저수지와 M저수지)의 영상자료와 저수위 시계열자료를 활용하여 구현하였다. 적용 결과 이미지 분할 모델의 성능은 매우 우수한 것으로 나타났으며, 수위 인식 모델의 경우 수위 분류 계급구간에 따라 성능이 상이한 것으로 나타났다. 특히 영상자료의 픽셀 변동이 클수록 정확도 80% 이상이 확보 가능한 것으로 확인되었으나, 그렇지 않은 경우, 정확도가 50% 수준인 것으로 나타났다. 본 연구에서 개발한 모델은 향후 이미지 자료가 추가로 확보될 경우, 그 활용도 및 정확도가 더 높아질 것으로 기대한다.

드론 열화상 화소값의 타겟 온도변환을 위한 방사율 영향 분석 (Study on the Effect of Emissivity for Estimation of the Surface Temperature from Drone-based Thermal Images)

  • 조현정;이재왕;정나영;오재홍
    • 한국측량학회지
    • /
    • 제40권1호
    • /
    • pp.41-49
    • /
    • 2022
  • 최근 열화상 카메라의 수요 증가와 함께 열화상 카메라를 활용한 연구 또한 관심이 높아지고 있다. 그 중, 기존의 드론에 열화상 카메라를 부착하여 촬영하는 등의 단순 촬영에서 나아가 열 영상 처리를 통한 디지털 트윈 구축, 영상화된 데이터를 통한 관리 시스템 구축 등 열 영상 처리 후 데이터를 응용한 연구가 증가하고 있다. 본 논문에서는 열화상 카메라를 처리하는 과정에서 생성되는 화소값인 DN값(Digital Number)이 실제 표면 온도로 변환하기 위한 관계식 유도과정에서 방사율이 DN값에 미치는 영향을 알아보기 위한 연구를 진행하였다. DN값은 열 영상의 스펙트럼 밴드 값을 나타내는 숫자로 열 영상 데이터를 구성하는 중요한 요소이다. 하지만 DN값은 실제 표면 온도를 표시하는 온도 값이 아닌 열이 높고 낮음을 밝기로 표시한 밝기 값으로 실제 표면 온도와 비 선형적인 관계이다. 그러므로 열화상 카메라로 획득한 영상 이미지의 DN값을 실제 표면 온도와 관계성을 보일 수 있다면 데이터를 처리하기 수월하며, 더 많은 활용성을 기대할 수 있다. 그러므로 본 연구에서는 우선, 실제 표면 온도와 열 영상의 DN값의 관계를 분석하고, 열화상 카메라와 같은 원리로 작용하는 비접촉 열화상 온도계가 실제 표면 온도에 근접한 참값으로 변환할 수 있도록 방사 조정을 진행하였다. 그 결과 실제 표면 온도 및 DN값의 관계 그래프와 방사 조정된 비접촉 열화상 온도계 및 DN값의 관계 그래프가 유사한 선형관계를 보였으며 방사율을 조정하기 전보다 조정한 후의 비접촉 온도가 실제 표면 온도에 더 근접한 결과를 얻었다.

증강현실 시각화를 위해 K-최근접 이웃을 사용한 BIM 메쉬 경량화 알고리즘 (BIM Mesh Optimization Algorithm Using K-Nearest Neighbors for Augmented Reality Visualization)

  • 빠 빠 윈 아웅;이동환;박주영;조민건;박승희
    • 대한토목학회논문집
    • /
    • 제42권2호
    • /
    • pp.249-256
    • /
    • 2022
  • 최근 BIM (Building Information Modeling)과 AR (Augmented Reality)을 결합한 실시간 시각화 기술이 건설관리 의사 결정 및 처리 효율성을 높이는 데 도움이 된다는 것을 보여주기 위한 다양한 연구가 활발히 진행되고 있다. 그러나, 대용량 BIM 데이터는 AR에 적용할 경우 데이터 전송 문제, 이미지 단절, 영상 끊김 등과 같은 다양한 문제가 발생함으로 3차원(3D) 모델의 메쉬 최적화를 통해 시각화의 효율성을 향상시켜야 한다. 대부분의 기존 메쉬 경량화 방법은 복잡하고 경계가 많은 3D 모델의 메쉬를 적절하게 처리할 수 없다. 이에 본 연구에서는 고성능 AR 시각화를 위해 BIM 데이터를 재구성하기 위한 k-최근접이웃(KNN) 분류 프레임워크 기반 메쉬 경량화 알고리즘을 제안하였다. 제안 알고리즘은 선정된 BIM 모델을 삼각형 중심 개념 기반의 Unity C# 코드로 경량화하였고 모델의 데이터 세트를 활용하여 정점 사이의 거리를 정의할 수 있는 KNN로 분류되었다. 그 결과 전체 모델과 각 구조의 경량화 메쉬 점 및 삼각형 개수가 각각 약 56 % 및 약 42 % 감소됨을 확인할 수 있었다. 결과적으로, 원본 모델과 비교했을 때 경량화한 모델은 시각적인 요소 및 정보 손실이 없었고, 따라서, AR 기기 활용 시 고성능 시각화를 향상시킬 수 있을 것으로 기대된다.

설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형 (Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection)

  • 문건두;김경재
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.241-265
    • /
    • 2023
  • 기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.

배달 이륜차 라이더 교통 법규 위반 단속 연구 (A Study on the Enforcement of Violation of Traffic Laws by Delivery Motorcycle Riders)

  • 조용빈;김진태;임준범;오상태
    • 한국ITS학회 논문지
    • /
    • 제21권1호
    • /
    • pp.182-192
    • /
    • 2022
  • 이륜차 전체 사고는 연평균 10.01% 증가하며, 사망자 수 또한 2.64% 증가하는 추세이다. 사륜차의 경우 도로에서 안전 운전을 강제할 수 있도록 단속 카메라가 설치되어있다. 그러나 이 단속 카메라는 사륜차 단속이 주목적이기 때문에 이륜차 단속 기능을 기대할 수 없다. 이륜차 단속은 현장 인력 투입을 통한 현장 단속에 의존할 수밖에 없다. 최근 이륜차 위법 행위 단속을 위해 경찰청에서는 '경찰청 SMART 국민제보'를 통한 이륜차 위법 행위를 국민 신고를 통해 수행 중이나 장기 지속되기 어렵다. 인력을 지속적으로 투입해야하는 유인 단속의 효과를 극대화 시킬 수 있는 적절한 단속 방안의 마련이 필요하다. 본 연구를 통해 배달 이륜차 라이더를 관리할 수 있도록 하는 제도적 장치인 배달 이륜차 라이더 자격증 ID 4종을 제안하였다. 또한, 배달 이륜차 자격증 ID 체계를 활용한 단속 실험을 수행하여 배달 이륜차 라이더 자격증 단속이 가능 여부를 D-MESO 프로그램을 통해 확인하였다.