• Title/Summary/Keyword: Mamdani 퍼지 추론 시스템

Search Result 14, Processing Time 0.023 seconds

Design of Interval Type-2 Fuzzy Inference System and Its optimization Realized by PSO (Interval Type-2 퍼지 추론 시스템의 설계와 PSO를 이용한 최적화)

  • Ji, Kwang-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.251-252
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 후반부를 1차 및 2차 함수식으로 나타내며 Mamdani 모델과 함께 가장 널리 사용되는 모델이다. 본 연구의 Interval Type-2 TSK FLS은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 Type-1 퍼지집합인 1차식을 사용한다. 또한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 오류역전파 학습알고리즘을 사용하여 파라미터들을 최적화 한다. 또한 학습에 앞서 PSO(Particle Swarm Optimization) 알고리즘을 사용하여 최적 학습률을 찾아 모델의 학습능력을 보다 효율적으로 한다. 본 논문에서는 Type-1과 Type-2 FLS의 성능을 가스로 공정 데이터를 적용하여 두 모델의 성능을 비교하고 노이즈를 추가한 데이터를 이용하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF

Trajectory Planning and Fuzzy Controller Design of a Re-entry vehicle on Approach and Landing phase (재진입 비행체의 진입 및 착륙단계 경로 생성 및 퍼지제어기 설계)

  • Min, Chan-Oh;Jo, Sung-Jin;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • The approach and landing phase of a re-entry vehicle is composed of Steep Glideslope phase, Circular Flare phase, Flare Maneuver phase. The trajectory planning algorithm with geometric parameters is studied in this paper for on-board trajectory planning. This algorithm generate reference trajectory rapidly considering safe landing of re-entry vehicle. In this paper, the Mamdani Fuzzy PD type controller for longitudinal and lateral control is designed which has robustness of nonlinear system. In addition, the simulation is performed including initial downrange and crossrange errors, and the results shows that the proposed fuzzy logic controller has good performance.

Design of Interval Type-2 TSK Fuzzy Inference System (Interval Type-2 TSK 퍼지 추론 시스템의 설계)

  • Ji, Kwang-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1849-1850
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합의 확장으로 Type-1 퍼지 집합으로는 다루기 힘든 언어적인 불확실성을 다루기 위해 고안되었다. 대표적인 퍼지 논리 시스템(Fuzzy Logic System; FLS)으론 Mamdani FLS 모델과 TSK FLS모델이 있다. 본 논문에서는 Interval Type-2 TSK FLS를 구성한다. FLS 구성을 위한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 전.후반부 파라미터들은 오류역전파 알고리즘을 통한 학습으로 결정한다. 본 논문에서는 Type-1 TSK FLS와 Interval Type-2 TSK FLS를 설계하고 가스로 공정 데이터에 적용하여 성능을 비교 분석한다. 또한 노이즈를 추가한 데이터들을 통하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF

A Model with an Inference Engine for a Fuzzy Production System Using Fuzzy Petri Nets (Fuzzy Petri Nets를 이용한 퍼지 추론 시스템의 모델링 및 추론기관의 구현)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.30-41
    • /
    • 1992
  • As a general model of rule-based systems, we propose a model for a fuzzy production system having chaining rules and an inference engine associated with the model. The concept of so-called 'fuzzy petri nets' is used to model the fuzzy production system and the inference engine is designed to be capable of handling inexact knowledge. The fuzzy logic is adopted to represent vagueness in the rules and the certainty factor is used to express uncertainty of each rules given by a human expert. Parallel, inference schemes are devised by transforming Fuzzy Petri nets to matrix formula. Futher, the inference engine mechanism under the Mamdani's implication method can be desceribed by a simple algebraic formula, which makes real time inference possible.

  • PDF