• Title/Summary/Keyword: Malus domestica borkh.

Search Result 67, Processing Time 0.034 seconds

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

Effect of High Vanillin Treatment on Storage Quality of Fresh-cut Apples

  • Chung, Hun-Sik;Toivonen, Peter M.A.;Moon, Kwang-Deog
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.636-640
    • /
    • 2009
  • The effect of post-cut vanillin treatment at high concentrations on changes of quality and microorganism in fresh-cut apples was studied. Apples (Malus domestica Borkh. cv. Fuji) were sliced, treated by dipping in different vanillin solution, 0, 40, 80, and 120 mM, packed in polyethylene bag, and then stored for up to 3 weeks at $4^{\circ}C$. Changes in total aerobic bacteria, yeast and molds, browning, soluble solids, and titratable acidity during storage were investigated. Growth of total aerobic bacteria throughout storage was strongly inhibited by vanillin regardless of treatment concentrations. Growth of yeast and molds was inhibited by vanillin of all concentrations until 2 weeks of storage. Levels of browning index, soluble solids, and titratable acidity were not significant difference among the treatment conditions until 2 weeks of storage. However, when stored for 3 weeks, browning index increased more at 80 or 120 mM vanillin, while soluble solids and titratable acidity more be decreased by 120 mM vanillin as compared with other treatment conditions. These results show that the usage of vanillin in processing of fresh-cut apples had a limitation for maintaining quality.

Identification and characterization of S-RNase genes in apple rootstock and the diversity of S-RNases in Malus species

  • Kim, Hoy-Taek;Moriya, Shigeki;Okada, Kazuma;Abe, Kazuyuki;Park, Jong-In;Yamamoto, Toshiya;Nou, Ill-Sup
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • We isolated and confirmed two S-RNases, denoted as mpS1 and mpS2, from apple rootstock 'Marubakaido' (Malus prunifolia Borkh. Var. ringo Asami). These S-RNases contained and conserved five cysteine residues and two histidine residues, which are essential for RNase activity. The mpS1 showed high similarity to S5 (99.1%) of Malus spectabilis, whereas the mpS2 showed 99.5% nucleotide sequence similarity to S26 of (Malus ${\times}$ domestica) and 99.6% to S35 of (Malus sieversii) when compared with reported S-RNases. In amino acid sequences, the mpS1-RNase was almost similar to the S5-RNase of Malus spectabilis, and the mpS2-RNase was similar to the S35 of Malus sieversii, with only one bp being different from the S26-RNase of Malus ${\times}$ domestica. The 57 S-RNases of Malus species were renamed and rearranged containing the new S-RNases, as mprpS35 (mpS2) and mprpS57 (mpS1), for determining S-genotypes and identifying new alleles from apple species (Malus spp.).

Modified Atmosphere Packaging of ‘Tsugaru’Apple(Malus domestica Borkh) for Distribution (‘쓰가루’사과의 유통용 신선도유지 MA 포장 효과)

  • 박종대;홍석인;박형우;김동만
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • Modified atmosphere packaging(MAP) technology was applied to ‘Tsugaru’apple (Malus domestica Borkh) in order to extend the shelf-life of apples during distribution. ‘Tsugaru’apples were packed with the PE film of 40 $\mu\textrm{m}$ thickness(40LD), the PE film modified by the addition of 5% (w/w) zeolite (40CK), and the PE film bags containing the ethylene absorbent (40LP). Quality indices of ‘Tsugaru’apples during storage at 10$^{\circ}C$ were measured in terms of weight loss, soluble solids content, pH, titratable acidity, flesh firmness, peel color and sensory properties. Oxygen, carbon dioxide and ethylene concentration in the film bags changed rapidly at the early stage of storage. Weight loss of the control increased up to 3.0% after 60 days storage while those of the packed apples remained less than 0.6%. No significant differences in soluble solids content and titratable acidity could be found in all the treatments, but significant differences in pH between the control and the packed apples. Higher firmness was kept in 40LD and 40LD than other treatments during storage. Color of the peel changed rapidly in control but slowly in 40LD and 40LP. ‘Tsugaru’apples Packed with Packaging films showed a good visual and sensory quality. Results suggest that packaging treatment with LDPE of 40 $\mu\textrm{m}$ thickness and ethylene absorbent can be used for extending the shelf-life of ‘Tsugaru’apples during distribution.

  • PDF

Applications of Organic Fungicides Reduce Photosynthesis and Fruit Quality of Apple Trees

  • Bhusal, Narayan;Kwon, Jun Hyung;Han, Su-Gon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.708-718
    • /
    • 2016
  • Two different pest control programs were applied on 8-year-old 'Ryoka'/M.26 apple trees (Malus domestica Borkh.). Lime sulfur or Bordeaux mixture with emulsified oil were applied 12 times from late March to mid-September as organic treatment, and synthetic chemicals were 7 times applied as control treatment. Over the entire apple-growing season, photosynthesis rates of apple trees were significantly lower in the organic treatment than in the control, and this photosynthetic differences were larger in July and August. Photosynthesis-related parameters such as stomatal conductance and transpiration behaved similarly to photosynthesis. The leaf area in the organic treatment was significantly smaller ($24.7cm^2$) than that in the control treatment ($30.7cm^2$). Organic leaves contained significantly less Chl. a ($15.5mg{\cdot}g^{-1}$) than did control leaves ($17.6mg{\cdot}g^{-1}$). Fruit yield per tree was significantly lower in the organic treatment (18.8 kg) than in the control (24.5 kg), because organic fruits experienced a higher rate of disease infection such as white rot (Botryosphaeria dothidae) and bitter rot (Glomerella cingulata) than did control fruits. Organic fruits had high flesh firmness but less color development (lower Hunter's a values). In this experiment, the pest control program with frequent applications of organic fungicides showed negative effects on photosynthesis and disease infection on leaves and fruits, and thus reduce the fruit quality and yield in 'Ryoka'/M.26 apple trees.

Changes in Respiratory and Quality Characteristics of 'Tsugaru' Apple by Storage Temperature (저장온도에 따른 '쓰가루' 사과의 호흡 및 품질특성 변화)

  • Park, Hyung-Woo;Park, Jong-Dae;Hong, Seok-In;Kim, Dong-Man
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.133-138
    • /
    • 2000
  • The research was conducted to measure the effect of temperature on respiratory and quality characteristics of 'Tsugaru' apple(Malus domestica Borkh) during storage at 4$^{\circ}$C, 10$^{\circ}$C and 20$^{\circ}$C. Respiration rate of the apple just after harvest was 7.57 mL CO$_2$/kg/h at 20$^{\circ}$C. It was decreased rapidly and was 2.86 mL CO$_2$/kg/h after storage for 45 days at 20$^{\circ}$C. The apples showed the highest ethylene production rate at 10$^{\circ}$C and 20$^{\circ}$C after 14 days, and at 4$^{\circ}$C after 28 days during storage. Weight of the apple was reduced by 2.9% after 120 days at 4$^{\circ}$C and by 6.1% after 45 days at 20$^{\circ}$C. Color difference of peel and pH increased with the temperatures but titratable acidity and flesh firmness showed the reverse trends during storage. According to the subjective quality test, it could be suggested that the shelf-life of the apple is 86 days at 4$^{\circ}$C, 65 days at 10$^{\circ}$C and 37 days at 20$^{\circ}$C, respectively.

  • PDF

Effect of Modified Atmosphere Packaging in Microperforated Film on Maintenance of the Quality of Fresh-Cut Apples (미세 천공 필름에 의한 신선절단 사과의 MA포장 효과)

  • Chung, Hun-Sik;Toivonen, Peter;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.347-351
    • /
    • 2008
  • The effect of microperforated packaging films on fresh-cut apples was studied Apples (Malus domestica Borkh. cv. Red Delicious) were cored and cut, packaged in laser microperforated film or non-microperforated polyolefin film, and stored for 3 weeks at 4C. The flesh firmness of apples packaged in microperforated film during the storage period was significantly higher than that of apples packaged in non-microperforated film, and the level of soluble solids was also higher. The browning index, titratable acidity, pH, acetaldehyde and ethanol levels were not affected by microperforation. These results show that microperforated films could be used for retention of flesh firmness in fresh-cut apples.

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Byung-Oh;Choi, Hyong-Woo;Park, Kyeung-Il;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.117-123
    • /
    • 2020
  • We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.