International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.69-78
/
2023
With the global rise of digital data, the uncontrolled quantity of data is susceptible to cyber warfare or cyber attacks. Therefore, it is necessary to improve cyber security systems. This research studies the behavior of malicious acts and uses Higuchi Fractal Dimension (HFD), which is a non-linear mathematical method to examine the intricacy of the behavior of these malicious acts and anomalies within the cyber physical system. The HFD algorithm was tested successfully using synthetic time series network data and validated on real-time network data, producing accurate results. It was found that the highest fractal dimension value was computed from the DoS attack time series data. Furthermore, the difference in the HFD values between the DoS attack data and the normal traffic data was the highest. The malicious network data and the non-malicious network data were successfully classified using the Receiver Operating Characteristics (ROC) method in conjunction with a scaling stationary index that helps to boost the ROC technique in classifying normal and malicious traffic. Hence, the suggested methodology may be utilized to rapidly detect the existence of abnormalities in traffic with the aim of further using other methods of cyber-attack detection.
Journal of the Korea Institute of Information Security & Cryptology
/
v.32
no.2
/
pp.439-446
/
2022
Document-type malicious codes are being actively distributed using attachments on websites or e-mails. Document-type malicious code is relatively easy to bypass security programs because the executable file is not executed directly. Therefore, document-type malicious code should be detected and prevented in advance. To detect document-type malicious code, we identified the document structure and selected keywords suspected of being malicious. We then created a dataset by converting the stream data in the document to ASCII code values. We specified the location of malicious keywords in the document stream data, and classified the stream as malicious by recognizing the adjacent information of the malicious keywords. As a result of detecting malicious codes by applying the CNN model, we derived accuracies of 0.97 and 0.92 in stream units and file units, respectively.
Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4011-4027
/
2021
Cloud Computing has emerged as an extensively used technology not only in the IT sector but almost in all sectors. As the nature of the cloud is distributed and dynamic, the jeopardies present in the current implementations of virtualization, numerous security threats and attacks have been reported. Considering the potent architecture and the system complexity, it is indispensable to adopt fundamentals. This paper proposes a secure authentication and data sharing scheme for providing security to the cloud data. An efficient IPSO-KELM is proposed for detecting the malicious behaviour of the user. Initially, the proposed method starts with the authentication phase of the data sender. After authentication, the sender sends the data to the cloud, and the IPSO-KELM identifies if the received data from the sender is an attacked one or normal data i.e. the algorithm identifies if the data is received from a malicious sender or authenticated sender. If the data received from the sender is identified to be normal data, then the data is securely shared with the data receiver using SHA256-RSA algorithm. The upshot of the proposed method are scrutinized by identifying the dissimilarities with the other existing techniques to confirm that the proposed IPSO-KELM and SHA256-RSA works well for malicious user detection and secure data sharing in the cloud.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.6145-6158
/
2019
It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.11
/
pp.5594-5615
/
2019
Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.
Journal of Information Technology Applications and Management
/
v.25
no.1
/
pp.87-104
/
2018
The internet is spreading widely and malicious comments which is a negative aspect is increasing. Previous studies have considered anonymity as a cyber characteristic of malicious comments. However, there are a theoretical confusion due to inconsistent results. In addition, the dissemination, one of cyber characteristics, have been mentioned the theoretical relationship on malicious comments, but measurement and empirical study about dissemination were still limited. Therefore, this study developed a measurement of dissemination and investigated the relationship between cyber characteristics (anonymity, dissemination) and malicious comments on Facebook. As a result of research, this study identified that anonymity is not significant on malicious comments and discovered that the dissemination of cyber space has a direct influence on malicious comments. This study suggests that information systems can contribute to malicious comments researches by proposing cyber characteristics.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.1
/
pp.240-259
/
2020
Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.
Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
Journal of Information Processing Systems
/
v.9
no.3
/
pp.395-404
/
2013
In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.
International Journal of Computer Science & Network Security
/
v.21
no.6
/
pp.89-100
/
2021
Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.