• Title/Summary/Keyword: Malicious Code Detection

Search Result 165, Processing Time 0.029 seconds

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

Detection of Malicious Code using Association Rule Mining and Naive Bayes classification (연관규칙 마이닝과 나이브베이즈 분류를 이용한 악성코드 탐지)

  • Ju, Yeongji;Kim, Byeongsik;Shin, Juhyun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1759-1767
    • /
    • 2017
  • Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.

Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning (딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘)

  • Woo, Sung-hee;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.306-308
    • /
    • 2018
  • This paper proposes a variant malicious code detection algorithm in a mobile environment using a deep learning algorithm. In order to solve the problem of malicious code detection method based on Android, we have proved high detection rate through signature based malicious code detection method and realtime malicious file detection algorithm using machine learning method.

  • PDF

Extraction and classification of characteristic information of malicious code for an intelligent detection model (지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류)

  • Hwang, Yoon-Cheol
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2022
  • In recent years, malicious codes are being produced using the developing information and communication technology, and it is insufficient to detect them with the existing detection system. In order to accurately and efficiently detect and respond to such intelligent malicious code, an intelligent detection model is required, and in order to maximize detection performance, it is important to train with the main characteristic information set of the malicious code. In this paper, we proposed a technique for designing an intelligent detection model and generating the data required for model training as a set of key feature information through transformation, dimensionality reduction, and feature selection steps. And based on this, the main characteristic information was classified by malicious code. In addition, based on the classified characteristic information, we derived common characteristic information that can be used to analyze and detect modified or newly emerging malicious codes. Since the proposed detection model detects malicious codes by learning with a limited number of characteristic information, the detection time and response are fast, so damage can be greatly reduced and Although the performance evaluation result value is slightly different depending on the learning algorithm, it was found through evaluation that most malicious codes can be detected.

JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code using Internal Function Hooking

  • Kim, Hyoung-Chun;Choi, Young-Han;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.766-783
    • /
    • 2012
  • Recently, many malicious users have attacked web browsers using JavaScript code that can execute dynamic actions within the browsers. By forcing the browser to execute malicious JavaScript code, the attackers can steal personal information stored in the system, allow malware program downloads in the client's system, and so on. In order to reduce damage, malicious web pages must be located prior to general users accessing the infected pages. In this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as the hooking of all functions in the modules using the debug information and extracting the parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. JsSandbox was implemented based on a debugger engine, and some features were applied to detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the obfuscated string, detection of URLs related to redirection, and detection of exploit codes. Then, the proposed framework was analyzed for specific features, and the results demonstrate that JsSandbox can be applied to the analysis of the behavior of malicious web pages.

Intelligent Malicious Web-page Detection System based on Real Analysis Environment (리얼 분석환경 기반 지능형 악성 웹페이지 탐지 시스템)

  • Song, Jongseok;Lee, Kyeongsuk;Kim, Wooseung;Oh, Ikkyoon;Kim, Yongmin
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Recently, distribution of malicious codes using the Internet has been one of the most serious cyber threats. Technology of malicious code distribution with detection bypass techniques has been also developing and the research has focused on how to detect and analyze them. However, obfuscated malicious JavaScript is almost impossible to detect, because the existing malicious code distributed web page detection system is based on signature and another limitation is that it requires constant updates of the detection patterns. We propose to overcome these limitations by means of an intelligent malicious code distributed web page detection system using a real browser that can analyze and detect intelligent malicious code distributed web sites effectively.

Malicious Code Detection using the Effective Preprocessing Method Based on Native API (Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구)

  • Bae, Seong-Jae;Cho, Jae-Ik;Shon, Tae-Shik;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.785-796
    • /
    • 2012
  • In this paper, we propose an effective Behavior-based detection technique using the frequency of system calls to detect malicious code, when the number of training data is fewer than the number of properties on system calls. In this study, we collect the Native APIs which are Windows kernel data generated by running program code. Then we adopt the normalized freqeuncy of Native APIs as the basic properties. In addition, the basic properties are transformed to new properties by GLDA(Generalized Linear Discriminant Analysis) that is an effective method to discriminate between malicious code and normal code, although the number of training data is fewer than the number of properties. To detect the malicious code, kNN(k-Nearest Neighbor) classification, one of the bayesian classification technique, was used in this paper. We compared the proposed detection method with the other methods on collected Native APIs to verify efficiency of proposed method. It is presented that proposed detection method has a lower false positive rate than other methods on the threshold value when detection rate is 100%.

MS Office Malicious Document Detection Based on CNN (CNN 기반 MS Office 악성 문서 탐지)

  • Park, Hyun-su;Kang, Ah Reum
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.439-446
    • /
    • 2022
  • Document-type malicious codes are being actively distributed using attachments on websites or e-mails. Document-type malicious code is relatively easy to bypass security programs because the executable file is not executed directly. Therefore, document-type malicious code should be detected and prevented in advance. To detect document-type malicious code, we identified the document structure and selected keywords suspected of being malicious. We then created a dataset by converting the stream data in the document to ASCII code values. We specified the location of malicious keywords in the document stream data, and classified the stream as malicious by recognizing the adjacent information of the malicious keywords. As a result of detecting malicious codes by applying the CNN model, we derived accuracies of 0.97 and 0.92 in stream units and file units, respectively.

Identification of Attack Group using Malware and Packer Detection (악성코드 및 패커 탐지를 이용한 공격 그룹 판별)

  • Moon, Heaeun;Sung, Joonyoung;Lee, Hyunsik;Jang, Gyeongik;Kwak, Kiyong;Woo, Sangtae
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the number of cyber attacks using malicious code has increased. Various types of malicious code detection techniques have been researched for several years as the damage has increased. In recent years, profiling techniques have been used to identify attack groups. This paper focuses on the identification of attack groups using a detection technique that does not involve malicious code detection. The attacker is identified by using a string or a code signature of the malicious code. In addition, the detection rate is increased by adding a technique to confirm the packing file. We use Yara as a detection technique. We have research about RAT (remote access tool) that is mainly used in attack groups. Further, this paper develops a ruleset using malicious code and packer main feature signatures for RAT which is mainly used by the attack groups. It is possible to detect the attacker by detecting RAT based on the newly created ruleset.

An APT Malicious Traffic Detection Method with Considering of Trust Model (신뢰모형을 고려한 APT 악성 트래픽 탐지 기법)

  • Yun, Kyung-mi;Cho, Gi-hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.937-939
    • /
    • 2014
  • Recently, an intelligent APT(Advanced Persistent Threat) attack which aims to a special target is getting to be greatly increased. It is very hard to protect with existing intrusion detection methods because of the difficulties to protect the initial intrusion of malicious code. In this paper, we analyze out-bound traffics to prevent call-back step after malicious code intrusion, and propose an APT malicious traffic detection method with considering of trust. The proposed method is expected to provide a basement to improve the detection rate in comparing with that of existing detection methods.

  • PDF