• 제목/요약/키워드: Malicious Code Detection

검색결과 165건 처리시간 0.025초

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

연관규칙 마이닝과 나이브베이즈 분류를 이용한 악성코드 탐지 (Detection of Malicious Code using Association Rule Mining and Naive Bayes classification)

  • 주영지;김병식;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제20권11호
    • /
    • pp.1759-1767
    • /
    • 2017
  • Although Open API has been invigorated by advancements in the software industry, diverse types of malicious code have also increased. Thus, many studies have been carried out to discriminate the behaviors of malicious code based on API data, and to determine whether malicious code is included in a specific executable file. Existing methods detect malicious code by analyzing signature data, which requires a long time to detect mutated malicious code and has a high false detection rate. Accordingly, in this paper, we propose a method that analyzes and detects malicious code using association rule mining and an Naive Bayes classification. The proposed method reduces the false detection rate by mining the rules of malicious and normal code APIs in the PE file and grouping patterns using the DHP(Direct Hashing and Pruning) algorithm, and classifies malicious and normal files using the Naive Bayes.

딥러닝을 이용한 모바일 환경에서 변종 악성코드 탐지 알고리즘 (Algorithm for Detecting Malicious Code in Mobile Environment Using Deep Learning)

  • 우성희;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.306-308
    • /
    • 2018
  • 제안 논문은 딥러닝 알고리즘을 이용해 모바일 환경에서 변종 악성코드 탐지 알고리즘을 제안한다. 안드로이드 기반의 행위 기반의 악성코드 탐지 방법의 문제점을 해결하기 위해 시그니처 기반 악성코드 탐지방법과 머신 러닝(Machine Learning)기법을 활용한 실시간 악성파일 탐지 알고리즘을 통해 높은 탐지율을 증명하였다.

  • PDF

지능적 탐지 모델을 위한 악의적인 코드의 특징 정보 추출 및 분류 (Extraction and classification of characteristic information of malicious code for an intelligent detection model)

  • 황윤철
    • 산업융합연구
    • /
    • 제20권5호
    • /
    • pp.61-68
    • /
    • 2022
  • 최근에는 발전하는 정보통신 기술을 이용하여 악의적인 코드들이 제작되고 있고 이를 기존 탐지 시스템으로는 탐지하는게 역부족인 실정이다. 이러한 지능적이고 악의적인 코드를 정확하고 효율성 있게 탐지하고 대응하기 위해서는 지능적 탐지 모델이 필요하다. 그리고, 탐지 성능을 최대로 높이기 위해서는 악의적인 코드의 주요 특징 정보 집합으로 훈련하는 것이 중요하다. 본 논문에서는 지능적 탐지 모델을 설계하고 모델 훈련에 필요한 데이터를 변환, 차원축소, 특징 선택 단계를 거쳐 주요 특징 정보 집합으로 생성하는 기법을 제안하였다. 그리고 이를 기반으로 악의적인 코드별로 주요 특징 정보를 분류하였다. 또한, 분류된 특징 정보들을 기반으로 변형되거나 새로 등장하는 악의적인 코드를 분석하고 탐지하는데 사용할 수 있는 공통 특징 정보를 도출하였다. 제안된 탐지 모델은 제한된 수의 특성 정보로 학습하여 악의적인 코드를 탐지하기에 탐지 시간과 대응이 빨리 이루어져 피해를 크게 줄일 수 있다. 그리고, 성능 평가 결과값은 학습 알고리즘에 따라 약간 차이가 나지만 악의적인 코드 대부분을 탐지할 수 있음을 평가로 알 수 있었다.

JsSandbox: A Framework for Analyzing the Behavior of Malicious JavaScript Code using Internal Function Hooking

  • Kim, Hyoung-Chun;Choi, Young-Han;Lee, Dong-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권2호
    • /
    • pp.766-783
    • /
    • 2012
  • Recently, many malicious users have attacked web browsers using JavaScript code that can execute dynamic actions within the browsers. By forcing the browser to execute malicious JavaScript code, the attackers can steal personal information stored in the system, allow malware program downloads in the client's system, and so on. In order to reduce damage, malicious web pages must be located prior to general users accessing the infected pages. In this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as the hooking of all functions in the modules using the debug information and extracting the parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. JsSandbox was implemented based on a debugger engine, and some features were applied to detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the obfuscated string, detection of URLs related to redirection, and detection of exploit codes. Then, the proposed framework was analyzed for specific features, and the results demonstrate that JsSandbox can be applied to the analysis of the behavior of malicious web pages.

리얼 분석환경 기반 지능형 악성 웹페이지 탐지 시스템 (Intelligent Malicious Web-page Detection System based on Real Analysis Environment)

  • 송종석;이경석;김우승;오익균;김용민
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.1-8
    • /
    • 2018
  • 최근 인터넷의 발전과 동시에 인터넷을 이용한 악성코드 유포는 가장 심각한 사이버 위협 중 하나이며, 탐지 우회 기법이 적용된 악성코드 유포 기술 또한 발전하고 있어, 이를 탐지하고 분석하는 연구가 활발하게 이루어지고 있다. 하지만 기존의 악성코드 유포 웹페이지 탐지 시스템은 시그니처 기반이어서 난독화된 악성 자바스크립트는 탐지가 거의 불가능하며, 탐지 패턴을 지속적으로 업데이트해야 하는 한계가 있다. 이러한 한계점을 극복하기 위해 지능화된 악성코드 유포 웹사이트를 효과적으로 분석 및 탐지할 수 있는 리얼 브라우저를 이용한 지능형 악성코드 유포 웹페이지 탐지 시스템을 제안하고자 한다.

Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구 (Malicious Code Detection using the Effective Preprocessing Method Based on Native API)

  • 배성재;조재익;손태식;문종섭
    • 정보보호학회논문지
    • /
    • 제22권4호
    • /
    • pp.785-796
    • /
    • 2012
  • 본 논문에서는 악성코드의 시스템 콜 빈도수를 특징값으로 행위 기반 탐지(behavior-based detection)를 할 때, 시스템 콜의 속성 개수보다 학습데이터 개수가 적더라도 효과적으로 악성 코드를 탐지하는 기법을 제안한다. 이 연구에서는, 프로그램 코드가 동작할 때, 발생시키는 윈도우 커널 데이터인 Native API를 수집하여 빈도수로 정규화한 것을 기본적인 속성 값으로 사용하였다. 또한 악성코드와 정상 코드를 효과적으로 분류할 수 있으면서, 악성코드를 분류하기 위한 기본적인 속성의 개수보다 학습데이터 개수가 적어도 적용 가능한 GLDA(Generalized Linear Discriminant Analysis)를 사용하여, 새로운 속성 값들로 전환하였다. 분류 기법으로는 베이지언 분류법의 일종인 kNN(k-Nearest Neighbor) 분류법을 이용하여 악성 코드를 탐지하였다. 제안된 탐지 기법의 성능을 검증하기 위하여 수집된 Native API 로 기존의 연구 방법과 비교 검증하였다. 본 논문에 제안된 기법이 탐지율(detection rate) 100%인 Threshold 값에서, 다른 탐지 기법보다 낮은 오탐율(false positive rate)을 나타내었다.

CNN 기반 MS Office 악성 문서 탐지 (MS Office Malicious Document Detection Based on CNN)

  • 박현수;강아름
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.439-446
    • /
    • 2022
  • 웹사이트나 메일의 첨부 파일을 이용해 문서형 악성코드의 유포가 활발하게 이루어지고 있다. 문서형 악성코드는 실행 파일이 직접 실행되는 것이 아니므로 보안 프로그램의 우회가 비교적 쉽다. 따라서 문서형 악성코드는 사전에 탐지하고 예방해야 한다. 이를 탐지하기 위해 문서의 구조를 파악하고 악성으로 의심되는 키워드를 선정하였다. 문서 내의 스트림 데이터를 아스키코드값으로 변환하여 데이터셋을 만들었다. CNN 알고리즘을 이용하여 문서의 스트림 데이터 내에 존재하는 악성 키워드의 위치를 확인하고 인접 정보를 활용하여 이를 악성으로 분류했다. 파일 내의 스트림 단위로 악성코드를 탐지한 결과 0.97의 정확도를 보였고, 파일 단위로 악성코드를 탐지한 결과 0.92의 정확도를 보였다.

악성코드 및 패커 탐지를 이용한 공격 그룹 판별 (Identification of Attack Group using Malware and Packer Detection)

  • 문해은;성준영;이현식;장경익;곽기용;우상태
    • 정보과학회 논문지
    • /
    • 제45권2호
    • /
    • pp.106-112
    • /
    • 2018
  • 최근 악성코드를 이용한 사이버 공격이 급증하고 있다. 피해가 늘어남에 따라 수 년간 다양한 방식의 악성코드 탐지 기법들이 연구되고 있으며, 최근 공격 그룹 판별을 위한 다양한 프로파일링 등장하고 있다. 본 논문은 악성코드 탐지가 아닌 특정 악성코드를 사용하는 공격 그룹에 대한 판별을 주목적으로 하며, 판별에 각 공격 그룹이 사용하는 악성코드에 대한 문자열 및 코드 시그니처를 이용한다. 탐지 기법을 구현하기 위해 야라(Yara)를 사용하였으며, 공격 그룹에서 주로 사용되는 원격 관리 도구(RAT, Remote Access Tool)를 대상으로 연구를 진행했다. 또한 탐지율 증가를 위하여 악성코드 패킹 여부 확인 및 해제 기술을 추가하였다. 본 논문은 최근 공격 그룹들이 주로 사용하는 원격 관리 도구를 대상으로 악성코드와 패커의 주요 특징 시그니처를 이용해 룰셋(Ruleset)을 작성하고 작성한 룰셋을 기반으로 원격관리 도구 탐지 및 공격 그룹 판별 가능성에 대해 다룬다.

신뢰모형을 고려한 APT 악성 트래픽 탐지 기법 (An APT Malicious Traffic Detection Method with Considering of Trust Model)

  • 윤경미;조기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.937-939
    • /
    • 2014
  • 최근 특정 대상을 목표로 하는 지능적이고 지속적인 공격(APT: Advanced Persistent Threat)이 급속히 증가하고 있다. APT는 악성코드 유입 시 완벽한 방어가 불가능하기 때문에 일반적인 탐지 기법으로 대응이 어려움이 있다. 따라서 본 논문에서는 악성코드 침투 이후의 콜백 단계를 차단하기 위하여 아웃바운드 트래픽을 분석하고 신뢰도를 기반으로 한 APT 공격 탐지기법에 대해 제안한다. 제안기법은 기존 탐지기법에 비해 탐지율을 크게 높이는 기반을 제공한다.

  • PDF