• Title/Summary/Keyword: Malas

Search Result 8, Processing Time 0.023 seconds

Changes in Sound Absorption Capability and Air Permeability of Malas (Homalium foetidum) Specimens after High Temperature Heat Treatment

  • Kang, Chun-Won;Li, Chengyuan;Jang, Eun-Suk;Jang, Sang-Sik;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.149-154
    • /
    • 2018
  • The changes in sound absorption capability and air permeability of Malas wood after high temperature heat treatment were investigated. The average air permeability of Malas in longitudinal direction after heated under the temperature of $190^{\circ}C$ during 3 hours was about 23.48 darcys and that of control was about 3.11 darcys. The noise reduction coefficients of Malas specimens were 17% for treatment and 10% for control. The means of sound absorption coefficient of specimens in the frequency range of 50~6,400 Hz were 42% for treatment and 17% for control, respectively.

Combustion Characteristics of Useful Imported Woods (국내 유용 해외 목재 수종의 연소특성 평가)

  • Seo, Hyun Jeong;Kang, Mee Ran;Park, Jung-Eun;Son, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.19-29
    • /
    • 2016
  • The purpose of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of imported wood. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test according to KS F ISO 5660-1 and thermogravimetric analysis (TGA). Analyzed species are five kinds of species as Merbau, Mempening, Garo Garo, Malas, and Dillenia. The heat released rate values showed the highest value of Malas as $375.52kW/m^2$, and Dillenia showed the lowest value as $133.30kW/m^2$. The data values were confirmed in the following order: Malas > Mempening > Garo Garo > Merbau > Dillenia. In case of the total heat release, it was measured in the following order: Mempening > Malas > Garo Garo > Merbau > Dillenia. The gas analysis results were that Dillenia showed the highest value of 0.034. Also, Mempening and Malas showed the lowest at 0.020 in the $CO/CO_2$. Min of mass reduction was shown as 74.79% Sargent cherry, on the other hand, Malas had a 83.52%. It showed a correlation between and of the CO and $CO_2$ generation and combustion characteristics of wood. The thermal decomposition temperature of the wood in the TGA were as follow that Merbau $348.07^{\circ}C$, Mempening $367.57^{\circ}C$, Garo Garo $350.59^{\circ}C$, Malas $352.41^{\circ}C$, Dillenia $364.33^{\circ}C$. The aim of this study is to determine the combustion properties of imported wood according to ISO 5660-1. And, based on the results of this study, we would proceed with further research for improving the fire safety of wood for construction.

Studies on Bonding Characteristics of Plywood by Kraft Black Liquor and Surface Activators (크라프트펄프 폐액(廢液)과 표면산화제(表面酸化劑)를 이용(利用)한 합판(合板)의 접착특성(接着特性)에 관(關)한 연구(硏究))

  • Chung, In-Ju;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.5-16
    • /
    • 1988
  • This experiment was executed to investigate the effect of activation of veneer surface by oxidizing agents, hydrogen peroxide and nitric acid, on bonding characteristics of Malas(Homalium foetidum Benth) plywood, in which the effects of these oxidizing agents amount, pretreatment time, and pressing time and temperatue on shear strength of the plywood were examined and discussed. In this research the activation of veneer surface by oxidants was effective in raising shear strength but the difference in shear strength was not observed between hydrogen peroxide and nitric acid treatment. Hydrogen peroxide treatment, however, seemed to be more profitable to industrial application because of its lower concentration and easier handling than nitric acid. The bonding method by lignin-phenol adhesive through surface activation revealed inferior shear strength to phenol- and urea-formaldehyde adhesive but superior water resistance to urea-formaldehyde adhesive and this bonding method, in addition, have the advantage of lower cost compared with phenol-formaldehyde adhesive, Therefore, this bonding method by lignin-phenol adhesive through surface activation seemed to economical in manufacturing of water-resistant wood panel materials in future.

  • PDF

Study on Durability of Wood Deck according to Species (수종별 목재 데크재의 내구성에 관한 연구)

  • Kim, Kyoung Jung;Lee, Won Jae;Choi, Chul;Kim, Hee Jin;Kang, Seog Goo
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.2
    • /
    • pp.111-117
    • /
    • 2017
  • Recently, as people's interest in wood has increased, the use of wood as household and landscape decking materials has increased. As the deck material, imported wood such as synthetic wood, Ipe, and Malas was used in addition to the existing preserved wood, but recently deck use has been activated as part of the activation of domestic materials. As an important quality factor in the selection of such decking materials, various durability along with weatherability for long - term use is required for maintenance. Generally used tropical hardwoods have excellent weatherability and durability without additional preservative treatment. However, the domestic larch is a wood species with a higher specific gravity and durability than ordinary conifers. However, it has not yet been used as a deck material due to lack of comparative studies on its characteristics. Therefore, hardness and durability of wood were measured using six specimens of Ipe, Massaranduba, Malas, Douglas-fir, Larch and Torrefied-Larch. Density Profile was used to measure the density, and Brinell hardness test and resistance test against momentary impact were carried out for the test of resistance to static load. Also, The hardness and durability of wood were measured by castor test with resistance test against dynamic load, as well as, nail down test by experiment on surface hardness and durability. As a result of the experiment, the hardness was increased in proportion to the density, and it was confirmed that the imported lumber was harder and durable than the domestic larch.

Analysis of the Defects in Wooden Landscape Facilities according to the Type of Timber - Focused on the Defects in Pillars of Out Door Rest Furniture - (목재 조경시설물의 목재 종류별 하자분석 - 휴게시설물 목재기둥의 균열하자를 중심으로-)

  • Park, Won-Kyu;Shin, Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.81-90
    • /
    • 2012
  • Improvements in the quality of life have resulted in a heightened awareness of safety and the environment. As a result, timber as an environmentally friendly material, is used for landscape facilities and a wide range of purposes. But there are a large number of defects since there are twists and cracks that can be found in wooden landscape facilities. This has led to the use of imported hardwood instead of the Western Hemlock which has been in widespread use. Hardwood is expensive. However, it is being used without any information or research on how much it reduces the actual defects. Construction contractors are in great need of information on the characteristics and defect rates of different types of timber. This study investigated and analyzed the cracks in four types of timber - namely the Western Hemlock, Burckella, Nyatoh and Malas - in order to provide basic information to construction contractor for them to be able to select and use the appropriate type of timber. The main results of this study are as follows. First, the Western Hemlock had 1.90 $cracks/m^2$, Malas had 0.83 $cracks/m^2$, Burckella had 0.14 $cracks/m^2$, and the Nyatoh had the least number of surface defects at 0.04 $cracks/m^2$. Second, while Malas has the highest degree of strength timber, Nyatoh had the smallest defect rate. This showed that having high timber strength does not necessarily mean it has less defects. Third, the Western Hemlock was the least expensive and Burckella was the most expensive. However, considering the cost of repairing defects, it would be economically advantageous to use Burckella and Nyatoh which have low defect rates. This study aimed to provide basic information to landscape construction contractors for them to be able to select and use the appropriate type of timber when constructing wooden outdoor rest furniture. The results are expected to contribute to quality enhancements and defect reduction in landscape facilities.

Adhesion Characteristics and Anatomic Scanning of Plywood Bonded by High Density Polyethylene (고밀도 폴리에틸렌으로 접착한 합판의 접착성질과 해부학적 관찰)

  • Han, Kie-Sun;Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.16-23
    • /
    • 1997
  • This study was carried out to discuss feasibility of high density polyethylene(HDPE) as a new substitute for the conventional adhesives in plywood manufacture. Plywood was composed of radiata pine(Pinus radiata) and Malas(Homallium feotidium) veneers and bonded by HDPE. Adhesion characteristics and anatomical scanning has been examined through tensile-shear strength test and scanning electron microscopy(SEM). The results are as follows; 1. Optimum loading quantity was 15g/$(30.3{\times}30.3)cm^2$, and tensile-shear strength increased with the increase of loading quantity. 2. Even at the hot pressing time of 1 minute, tensile-shear strength met the value of KS(over the 7.5kgf/$cm^2$), and tensile-shear strength increased with the increase of hot pressing time. 3. Plywood composed of veneer at moisture content of 19.6% showed similar tensile-shear strength to that at air conditioned moisture content of 11.4%. 4. Under the same condition of hot pressing time, tensile-shear strength of plywood bonded by HDPE met the KS value of boil and wet test and proved the same group as phenol formaldehyde adhesive. 5. HDPE films showed mechanical adhesion through penetration into the lathe check and ray of veneer.

  • PDF

Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy (자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계)

  • Lee, Dong-Geun;Lee, Ji Hye;Kim, Jeoung Han;Park, Nho Kwang;Lee, Yongtai;Jeong, Heon-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.

Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements (응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價))

  • Lee, Do-Sik;Jo, Jae-Sung;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF