• Title/Summary/Keyword: Malachite green adsorption

Search Result 12, Processing Time 0.021 seconds

Fundamental Studies for the Adsorption Features of Malachite Green on Granular Activated Carbon (활성탄에 의한 말라카이트 그린 흡착 특성에 관한 기초연구)

  • Baek, Mi-Hwa;Choi, Young-Jin;Kim, Young-Ji;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.459-463
    • /
    • 2009
  • The adsorption features of malachite green onto activated carbon have been investigated for its treatment from aqueous solution. The influential factors were examined the initial concentration of malachite green, reaction temperature, and pH. Under experimental conditions, adsorption equilibrium of malachite green was attained within 2 hr after the adsorption started. The adsorption reaction of malachite green followed the pseudo-second order rate model, and the adsorption rate constants(k2) decreased with increasing initial concentrations of malachite green. Adsorption behavior of malachite green on activated carbon was found to follow the Freundlich model well in the initial adsorbate concentration range. With increase in temperature, the adsorbed amount of malachite green at equilibrium increased, which indicate that the adsorption reaction was endothermic reaction. Thermodynamic parameters for malachite green adsorption reaction were estimated at varying temperatures, and in the pH range of 2-10, adsorption of malachite green increased.

Adsorption Characteristics of Malachite Green Employing Waste Garnet as Adsorbent (폐석류석을 흡착제로 이용한 말라카이트그린 흡착 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.216-221
    • /
    • 2007
  • The adsorption characteristics of malachite green on waste garnet have been investigated for its treatment from aqueous solution by employing waste garnet which is generated from the abrasive production process as an adsorbent. The influential factors examined were the initial concentration of malachite green in solution, reaction temperature, and the amount of adsorbent. Also, the effect of the modification of the surface of adsorbent on adsorption was examined. As the initial malachite green was increased with reaction temperature and the color removal of malachite green-containing solution was promoted with the amount of adsorbent. Finaly, increased adsorption of malachite green could be attained when the surface of glass was modified by hexamethyldisilazane.

Adsorption Characteristics of Malachite Green on Zeolite (제올라이트에 의한 말라카이트 그린의 흡착특성)

  • Lee, Jong-Jib;Um, Myeong-Heon
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • Malachite green is used a dye but malachite green is harmful toxic substance. In this study, the adsorption characteristics of zeolite has been investigated for the adsorption of malachite green dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of malachite green by a fixed amount of zeolite have been studied in batch adsorber and fixed bed. The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 25 to $45^{\circ}C$. The estimated values of k and ${\beta}$ are 23.60-46.88, 0.225-0.347, respectively. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet concentration and initial flow rate of malachite green are increased, the corresponding adsorption breaktime appears to decrease. Breaktime increased with increasing bed height and length of adsorption zone showed similar patterns.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite (제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2012
  • The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

Kinetics on the Removal of Cationic Dyes from Aqueous Solutions over Maghnia Montmorillonite Adsorbent (Maghnia Montmorillonite흡착제에 의한 수용액으로부터 양이온 염료 제거에 관한 반응속도론 연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.603-610
    • /
    • 2010
  • The potential feasibility of Maghnia clay as adsorbent to remove three cationic dyes (methylene blue (MB), neutral red (NR) and malachite green oxalates (MG)) from aqueous solution was investigated at various operating parameters such as contact time, pH, initial dye concentration and adsorbent dose. Optimum pH values for dyes adsorption were 6 for NR and 7 for MB and MG, respectively. Maximum adsorption of dyes, i.e. $\geq$ 90% has been achieved in aqueous solutions in 60 minutes. The adsorption of dyes followed the pseudo-second-order rate equation.

Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes (트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성)

  • Wu, Jing;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1331-1335
    • /
    • 2008
  • A Klebsiella pneumoniae WL-5 with the capability of decolorizing several recalcitrant dyes was isolated from activated sludge of an effluent treatment plant of a textile and dyeing industry. This strain showed a higher dye decolorization under static condition and color removal was optimal at pH 6-8 and $30-35^{\circ}C$. More than 90% of its color of Congo Red were reduced within 12 hr at $200\;{\mu}M$ dye concentration. Malachite Green, Brilliant Green and Reactive Black-5 lost over 85% of their colors at $10\;{\mu}M$ dye concentration, but the percentage decolorization of Reactive Red-120, Reactive Orange-16, and Crystal Violet were about 46%, 25%, and 13%, respectively. Decolorizations of Congo Red and triphenylmethane dyes, such as Malachite Green, Brilliant Green, and Crystal Violet were mainly due to adsorption to cells, whereas azo dyes, such as Reactive Black-5, Reactive Red-120, and Reactive Orange-16 seemed to be removed by biodegradation through unknown enzymatic processes.

Effects of pH and Temperature on the Adsorption of Cationic Dyes from Aqueous Suspension by Maghnia Montmorillonite (수용액으로부터 양이온 염료 흡수에 대한 pH 및 온도 효과)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.208-217
    • /
    • 2011
  • The effects of pH and temperature on the removal of two dyes (neutral red; NR and malachite green oxalates; MG) from aqueous effluents using Maghnia montmorillonite clay in a batch adsorption process were investigated. The results showed the stability of the optical properties of MG in aqueous solution and adsorbed onto clay under wide range of pH 3-9. However, the interaction of NR dye with clay is accompanied by a red shift of the main absorption bands of monomer cations under pH range of 3-5, whereas, those of neutral form remains nearly constant over the pH range of 8-12. The optimal pH for favorable adsorption of the dyes, i.e. ${\geq}$90% has been achieved in aqueous solutions at 6 and 7 for NR and VM respectively. The most suitable adsorption temperatures were 298 and 318 K with maximum adsorption capacities of 465.13mg/g for NR and 459.89 mg/g for MG. The adsorption equilibrium results for both dyes follow Langmuir, Freundlich isotherms. The numerical values of the mean free energy $E_a$ of 4.472-5.559 kj/mol and 2.000-2.886 kj/mol for NR and MG respectively indicated physical adsorption. Various thermodynamic parameters, such as ${\Delta}H^{\circ}$, ${\Delta}S^{\circ}$, ${\Delta}G^{\circ}$ and Ea have been calculated. The data showed that the adsorption process is spontaneous and endothermic. The sticking probability model was further used to assess the potential feasibility of the clay mineral as an alternative adsorbent for organic ion pollutants in aqueous solution.

Comparison Study on the Removal of Cationic Dyes from Aqueous Suspension of Maghnia Montmorillonite (Maghnia 산 Montmorillonite 수용액으로부터 양이온 염료의 제거 비교연구)

  • Elaziouti, A.;Laouedj, N.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.300-309
    • /
    • 2010
  • The ability of sodium-exchanged clay particles as an adsorbent for the removal of commercial dyes, Methylene blue (MB) and Malachite green oxalate (MG) from aqueous solutions has been investigated under various experimental conditions. The effect of the experimental parameters, such as pH solution, agitation time, adsorbate concentration and adsorbent dose were examined. Maximum adsorption of dyes, i.e. >90% has been achieved in aqueous solutions using 0.03 g of clay at a pH of 7 and 298 K for both dyes. The adsorption process was a fast and the equilibrium was obtained within the first 5 min. For the adsorption of both MB and MG dyes, the pseudo-second-order reaction kinetics provides the best correlation of the experimental data. The adsorption equilibrium results follow Langmuir and Dubini-Radushkevich (D-R) isotherms with high regression coefficients $R^2$ > 0.98. The mean free energies $E_a$ of adsorption from D-R model were 3.779 and 2.564 kj/mol for MB and MG respectively, which corresponds to a physisorption process.