• Title/Summary/Keyword: Major Gene

Search Result 1,867, Processing Time 0.033 seconds

Major gene interaction identification in Hanwoo by adjusted environmental effects (환경적인 요인을 보정한 한우의 우수 유전자 조합 선별)

  • Lee, Jea-Young;Jin, Mi-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.467-474
    • /
    • 2012
  • Human diseases and livestock economic traits are not typically the result of variation of a single genetic locus, but are rather the result of interplay between interactions among multiple genes and a variety of environmental exposures. We have used linear regression model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. Of course, we use 5 SNPs (single uncleotide polymorphism) which were studied recently by Oh et al. (2011). We apply the MDR (multifactor demensionality reduction) method on the identify major interaction effects of single nucleotide polymorphisms responsible for economic traits in a Korean cattle population.

Gorlin-Goltz Syndrome: A Case Report and Literature Review with PTCH1 Gene Sequencing

  • Hyo Seong Kim;Seung Heo;Kyung Sik Kim;Joon Choi;Jeong Yeol Yang
    • Archives of Plastic Surgery
    • /
    • v.50 no.4
    • /
    • pp.384-388
    • /
    • 2023
  • Gorlin-Goltz syndrome, also known as nevoid basal cell carcinoma syndrome, is an autosomal dominant disease characterized by multisystemic developmental defects caused by pathogenic variants such as patched-1 (PTCH1) gene variants and/or SUFU gene variants. The presence of either two main criteria or one major and two minor criteria are required for the diagnosis of Gorlin-Goltz syndrome. Recently, a major criterion for molecular confirmation has also been proposed. In this article, we report the case of an 80-year-old male who was admitted at our department for multiple brown-to-black papules and plaques on the entire body. He was diagnosed with Gorlin-Goltz syndrome with clinical, radiologic, and pathologic findings. While the diagnosis was made based on the clinical findings in general, confirmation of the genetic variants makes an ideal diagnosis and suggests a new treatment method for target therapy. We requested a genetic test of PTCH1 to ideally identify the molecular confirmation in the hedgehog signaling pathway. However, no pathogenic variants were found in the coding region of PTCH1, and no molecular confirmation was achieved.

SSR Marker Linked to f Locus in Soybean

  • Nam, Ki-Chul;Kim, Myung-Sik;Jeong, Woo-Hyeun;Kim, Seok-Hyeon;Chung, Jong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.51-54
    • /
    • 2007
  • Soybean has a morphological type with a broadened and flattened stem. Fasciation has been suggested as a new gene for soybean research. SSR marker linked to the $\Large f$ locus that controls fasciation phenotype has not identified within 10 cM. A mapping population consisting of 94 $F_2$ progenies was derived from a cross between wild type Clark (FF) and fasciation mutant C32 (${\Large f}{\Large f}$). The phenotype of $F_2$ individual plants was recorded at R2 and R3 growth stage from field. One-thousand 10-mer oligonucleotide RAPD primers and 29 SSR primers selected from the D1b+W of the soybean molecular linkage map were used. A genetic map was constructed from the segregating 35 RAPD, four SSR markers and one phenotypic(wild type/fasciation) marker. The segregation ratios of 3 : 1 observed in the $F_2$ population and the Chi-square values strongly suggest that the fasciation trait is controlled by a single recessive gene. Satt537 marker was linked to $\Large f$ locus at a distance of 9.6 cM. Assignment of the $\Large f$ locus to linkage group D1b+W and identification of markers can be used as an initial step for fine mapping of the $\Large f$ gene.

Characterization and Genetic Profiling of the Primary Cells and Tissues from Mandible of Mouse Fetus and Neonate

  • Kang, Jung-Han;Nam, Hyun;Park, Soon-Jung;Oh, Keun-Hee;Lee, Dong-Seup;Cho, Jae-Jin;Lee, Gene
    • International Journal of Oral Biology
    • /
    • v.32 no.1
    • /
    • pp.13-22
    • /
    • 2007
  • The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (${\alpha}-SMA$), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.

Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

  • Park, Kyung-Do;Kim, Hyeongmin;Hwang, Jae Yeon;Lee, Chang-Kyu;Do, Kyoung-Tag;Kim, Heui-Soo;Yang, Young-Mok;Kwon, Young-Jun;Kim, Jaemin;Kim, Hyeon Jeong;Song, Ki-Duk;Oh, Jae-Don;Kim, Heebal;Cho, Byung-Wook;Cho, Seoae;Lee, Hak-Kyo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.9
    • /
    • pp.1345-1354
    • /
    • 2014
  • Copy number variations (CNVs), important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

Lack of Association between Serotonin Transporter Promoter Gene Polymorphism and Citalopram Response in Major Depressive Disorder

  • Kang, Rhee-Hun;Choi, Myoung-Jin;Chang, Hun-Soo;Hahn, Sang-Woo;Lee, Hwa-Young;Paik, Jong-Woo;Lim, Se-Won;Oh, Kang-Seob;Jung, Han-Yong;Lee, Min-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The 5-HTT gene is a candidate gene for influencing the clinical response to antidepressant treatment. The purpose of this gene study was to determine the relationship between serotonin transporter gene polymorphism at the SLC6A4 and the response to citalopram in a Korean population with major depressive disorder (MDD). Citalopram was administered for 8 weeks to the 80 patients who completed this study. The severity of depression was assessed with the 21-item Hamilton Depression Rating scale, and the 5-HTTLPR genotypes in the patients were determined using the polymerase chain reaction. Our result did not showed significant differences in, allele, and carrier distribution between the normal group and MDD patients. This study suggest that polymorphism of the 5HTT gene was not associated with citalopram response to MDD in the Korean population.

Survivin, a Promising Gene for Targeted Cancer Treatment

  • Shamsabadi, Fatemeh T;Eidgahi, Mohammad Reza Akbari;Mehrbod, Parvaneh;Daneshvar, Nasibeh;Allaudin, Zeenathul Nazariah;Yamchi, Ahad;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3711-3719
    • /
    • 2016
  • Drawbacks of conventional cancer treatments, with lack of specificity and cytotoxicity using current approaches, underlies the necessity for development of a novel approach, gene-directed cancer therapy. This has provided novel technological opportunities in vitro and in vivo. This review focuses on a member of an apoptosis inhibitor family, survivin, as a valuable target. Not only the gene but also its promoter are applicable in this context. This article is based on a literature survey, with especial attention to RNA interference as well as tumor-specific promoter action. The search engine and databases utilized were Science direct, PubMed, MEDLINE and Google. In addition to cell-cycle modulation, apoptosis inhibition, interaction in cell-signaling pathways, cancer-selective expression, survivin also may be considered as specific target through its promoter as a novel treatment for cancer. Our purpose in writing this article was to create awareness in researchers, emphasizing relation of survivin gene expression to potential cancer treatment. The principal result and major conclusion of this manuscript are that survivin structure, biological functions and applications of RNA interference systems as well as tumor-specific promoter activity are of major interest for cancer gene therapy.

No Association between the 5-HT6 Receptor C267T Polymorphism and Response to Citalopram Treatment in Patient with Major Depressive Disorder (주요우울증 환자에서 세로토닌 6(5-HT6) 수용체 C267T 다형성과 Citalopram 치료반응에 대한 연구)

  • Hahn, Sang-Woo;Lim, Se-Won;Oh, Kang-Seob;Kang, Rhee-Hun;Lee, Min-Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.262-267
    • /
    • 2007
  • The serotonin 6(5-HT6) receptor gene is a candidate gene for influencing the clinical response to treatment with antidepressants. The purpose of this study was to determine the relationship between the C267T polymorphism in the 5-HT6 receptor gene and the treatment response to citalopram in a Korean population with major depressive disorder(MDD). Methods : Citalopram was administered for 8 weeks to the 90 patients who completed study. 21-item Hamilton depression rating scale(HAMD-21) was used as a outcome measure. Results : We found that the genotype, allele, and allele-carrier distributions did not differ significantly between MDD patients and normal controls. A main effect of an interaction of genotype with time on the decrease in the HAMD-21 score during the 8 weeks study period was not found. ANOVA revealed no significant effects of the C825T polymorphism on the decrease in the HAMD-21 score at each time period. Conclusions : These results suggest that the C267T polymorphism in the 5-HT6 receptor gene is not associated with the treatment response to citalopram.

  • PDF

Screening of the Dominant Rice Blast Resistance Genes with PCR-based SNP and CAPS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Kwon, Jin-Hyeuk;Kim, Yeong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.329-341
    • /
    • 2011
  • The objective of this study was to determine the genetic diversities of major rice blast resistance genes among 84 accessions of aromatic rice germplasm. Eighty four accessions were characterized by a dominant 11 set of PCR-based SNP and CAPS marker, which showed the broad spectrum resistance and closest linkage to seven major rice blast resistance (R) genes, Pia, Pib, Pii, Pi5 (Pi3), Pita (Pita-2), and Pi9 (t). The allele specific PCR markers assay genotype of SCAR and STS markers was applied to estimate the presence or absence of PCR amplicons detected with a pair of PCR markers. One indica accession, Basmati (IT211194), showed the positive amplicons of five major rice blast resistance genes, Pia, Pi5 (Pi3), Pib, Pi-ta (Pi-ta2), and Pik-5 (Pish). Among 48 accessions of the PCR amplicons detected with yca72 marker, only five accessions were identified to Pia gene on chromosome 11. The Pib gene was estimated with the NSb marker and was detected in 65 of 84 accessions. This study showed that nine of 84 accessions contained the Pii gene and owned Pi5 (Pi3) in 42 of 84 accessions by JJ817 and JJ113-T markers, which is coclosest with Pii on chromosome 9. Only six accessions were detected two alleles of the Pita or Pita-2 genes. Three of accessions were identified as the Pi9 (t) gene locus.

Polymorphisms of the Lipoprotein Lipase Gene of Red Seabream, Pagrus major (참돔의 lipoprotein lipase 유전자 다형성)

  • Jang, Yo-Soon;Hong, Kyung-Pyo;Noh, Choong-Hwan
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.551-557
    • /
    • 2004
  • Polymorphism of the lipoprotein lipase (LPL) gene which plays an important role in regulation of lipid deposition was analysed in two red seabream (pagrus major) populations (KF4, cultured KORDI line, n=100 : JPN, imported from Japan, n=100). We amplified a DNA fragment (1,091 bp) including the exon 2 region of the LPL gene, and conducted PCR-RFLP analysis using MspI and AluI. The PCR products were also sequenced. Two alleles (A and B) were found in MspI digestion and Sve alleles (A, B, C, D and E) in AluI digestion. The sequenced data revealed four nucleotide substitutions including one transversion at the MspI recognition site (nt 2,235, $C{\rightarrow}10$) and three transitions at the AluI recognition sites (nt 1,721, $A{\rightarrow}G;$ nt 2,319, $C{\rightarrow}T;$ nt 2,319, $T{\rightarrow}C$). Among them, substitutions at the nt 2,235 and 2,319 sites which are located in the exon 2 were proved to be silent point mutations. MspI polymorphism resulted in 3 genotypes, and the allele frequency was significantly different between the two fish populations, KF4 and JPN. In the case of AluI polymorphism, the 5 alleles (A, B, C, D, E) comprised 12 genotypes of the 5 alleles. KF4 population, alleles D and I were specific to the LPL gene Polymorphisms would be useful DNA markers for red seabream population.