• Title/Summary/Keyword: Maintenance monitoring

Search Result 1,326, Processing Time 0.025 seconds

Application of Resistivity/SP Monitoring Technique to Maintenance of Water Utilization Facilities (수리시설물의 유지관리를 위한 비저항/SP 모니터링기법 연구)

  • Park, Sam-Gyu;Kim, Jung-Ho;Seo, Goo-Won;Won, Jong-Geun;Kim, Byung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The subject of this paper is research into the application of resistivity/SP monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity/SP measurement, inclinometer, piezometer, and water gauge at an embankment, Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and SP variations that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variations of resistivity and SP at the embankment were provided from the monitoring data and we could accurately locate the portions of which resistivities and SP have sharply changed, Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity and SP, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity and SP data would be much more preferable to performing the just one-time measurements.

  • PDF

Application of Electrical Resistivity Monitoring Technique to Maintenance of Embankments (저수지의 유지관리를 위한 전기비저항모니터링 기법 응용)

  • Park Sam Gyu;Kim Jung-Ho;Seo Goo Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The subject of this paper is research into the application of electrical resistivity monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity measurement, inclinometer, piezometer, and water gauge at an embankment. Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variant images of electrical resistivity at the embankment were provided from the monitoring data and we could accurately locate the portion of which resistivities have sharply changed. Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity data and hydrological data would be much more preferable to performing the just one-time measurements.

An Analytical Study on the Durability Standard of Ground Structures Monitoring Sensors (지반구조물 계측센서의 내구연한 기준에 대한 분석적 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.53-59
    • /
    • 2021
  • Purpose & Method: The purpose of this study is the theoretical study on the durability standard of ground structures monitoring sensors. A survey on the durability criteria for construction monitoring sensors of domestic construction companies and the income tax implementation regulations, the standard years of contents such as buildings and the standards of the Public Procurement Service for construction monitoring and construction machinery were analyzed. Result: The durability criterion such as the inclination meter and the strain gauge, which are purchased from the Public Procurement Service prior to installation on the ground structure, is 8 to 10 years. Conclusion: The actual durability analysis by comparing the reliability of various monitoring sensors installed in dams at home and abroad, As a result of comprehensive study on the loss and damage rate of the maintenance monitoring sensor installed in the tunnel, the proper durability period of the built-in type monitoring sensor such as domestic pore pressure meter and earth pressure meter installed in the structure or the ground is 5 to 8 years it seems reasonable.

A Study on the Loss and Damage Ratio of Railroad Tunnel Maintenance Monitoring Sensor (철도터널 유지관리 계측센서의 손망실율 연구)

  • Woo, Jong-Tae
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.262-270
    • /
    • 2018
  • Purpose: This paper investigates and analyzes the loss and damage ratio of maintenance monitoring sensor in metropolitan and high speed railroad tunnel in Korea and abroad. Method: After 5~6 years from the installation, the maintenance monitoring sensor on metropolitan transit tunnels showed the loss and damage ratio from 14.2% to 14.8% in Seoul metro line no. 5, 6, 7, 9, and 13.9% in UK channel tunnel. Based on the result, 15% is thought to be a proper set for the elapsed years, which is 5 years from the installation. Results: The maintenance monitoring sensor on high speed railroad tunnels showed the loss and damage ratio of 60.9% in Ho-Nam high speed railroad on 1 stage after 3 ~ 5 years from the installation, which was approximately 4 times as high as that of Seoul metro line no. 5, 6, 7, 9. Conclusion: Kyung-Bu high speed railroad on 2 stage, after 8~10 years from the installation, showed the loss and damage ratio of 66.8%. Based on the result, it can be inferred that the loss and damage ratio increases drastically after 5~10 years from the installation. Therefore, it is necessary to study on the loss and damage ratio of long term elapsed years, especially more than 10 years from the installation.

An Intelligent bridge with an advanced monitoring system and smart control techniques

  • Miyamoto, Ayaho;Motoshita, Minoru
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.587-599
    • /
    • 2017
  • This paper introduces an approach to the realization of an ICT-based bridge remote monitoring system that enables real-time monitoring and controlled adjustments for unexpected heavy loads and also for damaging earthquakes or typhoons. In this paper, an integrated bridge remote monitoring system called the "Intelligent Bridge", which consists of a stand-alone monitoring system (SMS) and a web-based Internet monitoring system(IMS), was developed for not only bridge maintenance but also as an application for a para-stressing bridge system. To verify the possibility of controlling the actual structural performance of an "Intelligent Bridge", a model 2-span continuous cable-stayed bridge with adjustable cables was constructed. The experimental results demonstrate that the implemented monitoring system supplies detailed and accurate information about bridge behaviour for further evaluation and diagnosis, and it also opens up prospects for future application of a web-based remote system to actually adjust in-service bridges under field conditions.