• Title/Summary/Keyword: Maintenance Work Element

Search Result 42, Processing Time 0.023 seconds

Korean Maintainability Prediction Methodology Reflecting System Complexity (시스템 복잡도를 반영한 한국형 정비도 예측 방법론)

  • Kwon, Jae-Eon;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.119-126
    • /
    • 2021
  • During the development of a weapon system, the concept of maintainability is used for quantitatively predicting and analyzing the maintenance time. However, owing to the complexity of a weapon system, the standard maintenance time predicted during the system's development differs significantly from the measured time during the operation of the equipment after the system's development. According to the analysis presented in this paper, the maintenance time can be predicted by considering the system's complexity on the basis of the military specifications, and the procedure can be Part B of Procedure II and Method B of Procedure V. The maintenance work elements affected by the system complexity were identified by the analytic hierarchy process technique, and the system-complexity-reflecting weights of the maintenance work elements were calculated by the Delphi method, which involves expert surveys. Based on MIL-HDBK-470A and MIL-HDBK-472, it is going to present a Korean-style maintainability prediction method that reflects system complexity of weapons systems.

Fracture behaviors of tunnel lining caused by multi-factors: A case study

  • Zhao, Yiding;Zhang, Yongxing;Yang, Junsheng
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.269-276
    • /
    • 2019
  • The cracking and spalling caused by fracture of concrete lining have adverse impacts on serviceability and durability of the tunnel, and the subsequent maintenance work for damaged structure needs to be specific to the damaging causes. In this paper, a particular case study of an operational tunnel structure is presented for the serious cracking and spalling behaviours of concrete lining, focusing on the multi-factors inducing lining failure. An integrated field investigation is implemented to characterize the spatial distribution of damages and detailed site situations. According to results of nondestructive inspection, insufficient lining thickness and cavity behind lining are the coupled-inducement of lining failure bahaviors. To further understanding of the lining structure performance influenced by these multiple construction deficiencies, a reliable numerical simulation based on extended finite element method (XFEM) is performed by using the finite element software. The numerical model with 112 m longitudinal calculation, 100 m vertical calculation and 43 m vertical depth, and the concrete lining with 1450 solid elements are set enrichment shape function for the aim of simulating cracking behavior. The numerical simulation responses are essentially in accordance with the actual lining damaging forms, especially including a complete evolutionary process of lining spalling. This work demonstrates that the serious lining damaging behaviors are directly caused by a combination of insufficient thickness lining and cavity around the surrounding rocks. Ultimately, specific maintenance work is design based on the construction deficiencies, and that is confirmed as an efficient, time-saving and safe maintenance method in the operational railway tunnel.

Structural and Functional Measurements of a Space Truss Frame for Maintenance Works in Tunnels (터널의 유지보수공사 개선을 위한 가설 스페이스 트러스 프레임의 사용성 및 안정성 평가)

  • Lee, Dong Kyu;Kim, Do Hwan;Kim, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.92-98
    • /
    • 2012
  • This study shows details of a specific space truss frame structure devised to carry out maintenance and repair temporary works in tunnels. The purpose of this study is to verify structural safety and function of the innovative truss structure through an analysis tool, i.e.. ABAQUS, which is a suite of software application for finite element analysis and computer aided engineering. And then optimized size, i.e., thickness and diameter of truss members is evaluated in practice. In this study, construction methods in the temporary works are additionally represented by using the new space truss frame structure.

Development of Corrosion Defect Assessment Method for City Gas Pipeline (도시가스배관 부식결함 평가방안 개발)

  • Kim, Cheol-Man;Kim, Woo-Sik;Han, Sang-In;Choi, Song-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.228-233
    • /
    • 2004
  • The length of city gas pipeline is increasing with expansion of natural gas transmission rapidly. A lot of the expense was paid for repair and maintenance with increasing of pipeline length and the cost of repair and maintenance by the corrosion was the highest. It is necessary to evaluate integrity in case of thickness reduction by corrosion. There are a lot of assessment criteria for corrosion defect in foreign countries but they are not suitable for application in the country directly. In this work, we performed the burst test and the finite element analysis for city gas pipeline, KS D3507 and KS D3631 for city gas transmission, and developed the assessment method of corrosion defect, which is suitable for domestic condition.

  • PDF

A Planning Framework of BIM-based Work-Type Packaging for Educational Facility Maintenance (교육시설 유지관리 BIM 기반 공종 패키지 플래닝 프레임워크)

  • Bae, Chang-Joon;Park, Sang-Hun;Yoon, Sun-Jae;Lee, Mi-Young;Koo, Kyo-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.200-210
    • /
    • 2020
  • The maintenance of educational facilities was assembled in 12 project classifications of the Educational Improvement Program. The priorities were decided by the evaluation scores derived from the condition investigation, and maintenance works were budgeted in the order of priorities. These priorities were a schedule for conducting maintenance and an important criterion for obtaining a construction order. Several restrictions in the condition investigation exist, which derives budgets and conducts maintenance separately based on the priorities. An educational facility manager has a restriction in quantity take-off, which results in an incorrect budget. Discomfort would occur in an educational environment, and a period of infringing safety would increase. This study proposes applying a BIM in the condition investigation and the planning framework for work-type packaging. A BIM supports a budget calculation and derives evaluation scores by linking a repair and an inspection result. The work-type packaging algorithm divides a budget allocation range and derives the result of a grouped work-types applied in an equivalent space and element. As a result of applying cases, it could shorten the duration by approximately 37.4%. Its usability in selecting a grouped work-type was evaluated through an assessment with workers.

Proposal of Maintenance Scenario and Feasibility Analysis of Bridge Inspection using Bayesian Approach (베이지안 기법을 이용한 교량 점검 타당성 분석 및 유지관리 시나리오 제안)

  • Lee, Jin Hyuk;Lee, Kyung Yong;Ahn, Sang Mi;Kong, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.505-516
    • /
    • 2018
  • In order to establish an efficient bridge maintenance strategy, the future performance of a bridge must be estimated by considering the current performance, which allows more rational way of decision-making in the prediction model with higher accuracy. However, personnel-based existing maintenance may result in enormous maintenance costs since it is difficult for a bridge administrator to estimate the bridge performance exactly at a targeting management level, thereby disrupting a rational decision making for bridge maintenance. Therefore, in this work, we developed a representative performance prediction model for each bridge element considering uncertainty using domestic bridge inspection data, and proposed a bayesian updating method that can apply the developed model to actual maintenance bridge with higher accuracy. Also, the feasibility analysis based on calculation of maintenance cost for monitoring maintenance scenario case is performed to propose advantages of the Bayesian-updating-driven preventive maintenance in terms of the cost efficiency in contrast to the conventional periodic maintenance.

Existing concrete dams: loads definition and finite element models validation

  • Colombo, Martina;Domaneschi, Marco;Ghisi, Aldo
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.129-144
    • /
    • 2016
  • We present a methodology to validate with monitoring data finite element models of existing concrete dams: numerical analyses are performed to assess the structural response under the effects of seasonal loading conditions, represented by hydrostatic pressure on the upstream-downstream dam surfaces and thermal variations as recorded by a thermometers network. We show that the stiffness effect of the rock foundation and the surface degradation of concrete due to aging are crucial aspects to be accounted for a correct interpretation of the real behavior. This work summarizes some general procedures developed by this research group at Politecnico di Milano on traditional static monitoring systems and two significant case studies: a buttress gravity and an arch-gravity dam.

Characteristics of Middle Slab Stresses in Double-Deck Tunnel During Maintenance (복층터널 중간슬래브 유지관리에 따른 응력분포 특성 분석)

  • Cho, Young Kyo;Lee, Young Hoon;Park, Beom Keun;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.47-56
    • /
    • 2017
  • PURPOSES : The purpose of this study is to investigate the stresses of the middle slab in a double-deck tunnel owing to the slab lift to replace the underlying elastic pads during maintenance work. METHODS : The middle slab was divided into three different sections: typical section, expansion joint section, and emergency passageway section. Finite element analysis models of these three sections of middle slab were developed, and the stress distribution and maximum stresses were obtained using the models when the middle slab was lifted to replace the underlying elastic pads. Various slab lifting methods were examined in this study such as one-, two-, and multiple-point lifts, distributed lifts, and one or both slab side edge lifts. RESULTS : When the slab side edge is lifted, the longitudinal stresses of the slab are almost the same as the principal stresses. This implies that the governing stresses are the longitudinal stresses. The maximum stresses with both-edge lifts are generally smaller than those with one-edge lifts at all three sections of middle slab. CONCLUSIONS : If the middle slab in a double-deck tunnel is lifted for maintenance, the slab should be lifted at multiple points along the longitudinal direction to reduce the tensile stresses.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

Girder Distribution Model for Existing Short and Medium Span Steel Girder Bridges (단·중경간 강형교 거더의 횡분배 모델)

  • Eom, Jun-Sik;Nowak, Andrzej S.;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.219-229
    • /
    • 2003
  • The objective of this work is to verify the Code specified girder distribution factors for short and medium span bridges. To accomplish this objective, field tests were carried out on seventeen simply supported highway bridges. This paper presents the procedure and results of field tests that were performed to verify girder distribution factors. Finite Element analyses previously performed at the University of Michigan indicated that in most cases currently used girder distribution factors specified in AASHTO Codes are too conservative. However, these studies also showed that for short spans and short girder spacings, the girder distribution factors can be too permissive. Therefore, this paper focused on experimental evaluation of girder distribution factors for short and medium span steel girder bridges. The results were compared with the distribution factors specified by AASHTO Standard (2000) and AASHTO LRFD Code (1998). It has been found that the measured girder distribution factors are lower than AASHTO values in most cases, and sometimes the code specified values are overly conservative. The research work involved formulation of the testing procedure, selection of structure, installation of equipment, measurements, and interpretation of the results.