• 제목/요약/키워드: Maintenance ME Requirement

검색결과 28건 처리시간 0.029초

절식대사 시험에 의한 한우 수소의 유지에너지 요구량 결정에 관한 연구 (Energy Requirements of Growing Hanwoo Bulls for Maintenance by Fasting Metabolism)

  • 이상철;탁태영;김경훈;윤상기
    • Journal of Animal Science and Technology
    • /
    • 제45권1호
    • /
    • pp.113-122
    • /
    • 2003
  • 한우 수소의 유지를 위한 정미에너지 및 대사에너지를 구하기 위하여 28회의 절식대사 시험을 수행하였다. 체중 100 kg에서 400kg까지 100kg 증체 간격(100, 200, 300, 400 kg)으로 7종류의 사료를 각각 유지에너지 수준만 급여하여 분뇨채취를 위한 대사시험(5일)과 열 발생량 측정을 위한 호흡대사시험(2일)을 수행한후 다시 5일간 완전 절식시켜 마지막 24시간 동안 호흡대사시험을 실시하였다. 3종의 사료는 배합사료+볏짚(실험 I), 배합사료+목건초(실험 II), 배합사료+옥수수 사일리지(실험 III)이었고, 조사료와 농후사료의 비율은 40:60으로 하였다. 실험 IV, V, VI, VII은 각각 볏짚, 목건초, 옥수수 사일리지, 배합사료를 단독 급여하였다. 체중 100kg에서는 절식대사량이 66.05/$W^{0.75}$로 높았으나, 체중 200-400kg 사이에서는 60-63kcal/$W^{0.75}$로 거의 비슷하였다. 절식대사량에서 절식시 근육 활동(기립시간과 기복횟수)에 소요된 에너지를 제외한 체중 100-400kg의 평균 기초대사량은 55.92kcal/$W^{0.75}$이었다. 절식대사량에 체조직의 분해산물로서 뇨 에너지 배설량을 추가적으로 보정한 NEm 요구량은 체중 100kg에서 가장 높아 69.10 kcal/$W^{0.75}$였으나, 체중 200-400kg 간에서는 62.07-65.76kcal/$W^{0.75}$로서 체중간에 차이가 없었다. 각 사료조합중 유지량을 급여한 사료조합의 에너지 균형에서 얻어진 에너지 축적량(retained energy)과 보정 NEm인 기초대사시 열 발생량으로 섭취한 대사에너지를 에너지 평형상태로 환산한 결과, 전 체중 평균 MEm 요구량은 102.69kcal/$W^{0.75}$이었다.

번식용 교잡 흑염소의 유지와 성장을 위한 대사에너지 요구량 추정 (Prediction of Energy Requirements for Maintenance and Growth of Female Korean Black Goats)

  • 이진욱;김관우;이성수;고응규;이용재;김성우;전다연;노희종;윤영식;김도형
    • 한국초지조사료학회지
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2019
  • 본 연구는 사양실험에 의한 회귀식 추정방법에 의해 교잡종(개량종) 번식용 암컷 흑염소의 육성기와 임신기 유지와 성장을 위한 에너지요구량을 구하기 위해 수행되었다. 번식용 암컷 흑염소 50두를 공시하여 사료의 대사에너지 수준을 육성기(5개월령)에는 각각 2.32(G1), 2.49(G2), 2.74(G3), 2.99(G4) 및 3.24(G5) Mcal/kg로 하여 2016년 5월부터 9월까지 진행하였으며, 임신기(9개월령 이후)에는 각각 2.32(P1), 2.43(P2), 2.55(P3), 2.66(P4) 및 2.78(P5) Mcal/kg로 하여 2017년 1월부터 4월까지 수행하였다. 실험사료는 염소용 TMR 사료를 이용하여 조단백질 수준을 14%로 고정시키고 에너지 첨가제(유락)를 이용하여 에너지 수준을 조절하였다. 건물 섭취량은 처리구 간에 육성기, 임신기 모두 유의성이 없었으며, 체중대비 1.5~2.0% 수준으로 조사되었다. 일당증체량은 육성기에는 46~69g, 임신기에는 150~190g으로 사료의 에너지수준이 증가함에 따라 높게 나타났으며, 사료요구율은 육성기 6.5~9.7의 범위로 에너지수준이 높을수록 사료요구율이 개선되는 경향을 나타내었다. 임신기의 경우 3.5~3.8의 범위로 에너지 수준에 따른 영향은 없는 것으로 나타났다. 대사 체중 당 에너지섭취량과 일당증체량 사이의 회귀분석을 통한 유지에너지 요구량 추정 시 육성기에는 $102.5Kcal/BW^{0.75}$이고, 임신기에는 $105.83Kcal/BW^{0.75}$로 나타났다. 급여 사료의 에너지 수준에 따른 번식성적은 에너지 수준이 높아질수록 분만율이 낮게 나타났으나 산자수와 생시체중의 경우 증가하는 경향을 보였다. 본 연구에서 도출된 결과는 향후 흑염소의 사양표준 설정을 위한 기초자료로 이용될 수 있을 것으로 사료되며, 앞으로 대사실험, 비교도축법 등 다양한 추정방법과 비교를 통해 정확도를 높이는 연구가 필요할 것으로 사료된다.

Seasonal Changes in Voluntary Intake and Digestibility by Sheep Grazing Introduced Leymus chinensis Pasture

  • Sun, H.X.;Zhou, D.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.872-879
    • /
    • 2007
  • A study was conducted to investigate the seasonal changes in nutrient composition of pasture, voluntary intake and digestibility of sheep grazing an introduced Leymus chinensis pasture located in western Jilin Province, China. The whole-plant of L. chinensis and the samples simulating ingestion by sheep (simulating sample) were collected in spring (May, 2004), summer (July, 2004), autumn (September, 2004) and the end of winter (April, 2005). The contents of gross energy (GE), organic matter (OM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and alkanes were determined. Voluntary intake and apparent digestibility of the nutrients in each season were also examined using 6 mature Chinese Northeast Merino ewes (differed among the seasons) grazing on a paddock of 1 ha size. The apparent digestibilities of GE, dry matter (DM), OM, CP, NDF and ADF of L. chinensis were significantly greater (p<0.05) in spring and summer than in autumn and winter. Metabolizable energy (ME) content was 12.13, 11.62, 8.66 and 10.40 MJ/kg DM for L. chinensis in spring, summer, autumn and winter respectively, and the corresponding voluntary feed intakes were 91, 119, 59 and 58 g/d per kg metabolic weight ($LW^{0.75}$). The ME contents and DM intakes in autumn and winter were significantly lower than in spring and summer (p<0.05). The intake of L. chinensis pasture was sufficient to provide ME requirements for maintenance by the dry ewes in all the seasons, but inadequate for maintenance protein requirement in winter. (Supported by funds from National Basic Research Program of China, Grant No. 2007CB106800).

METABOLIZABLE ENERGY REQUIREMENTS FOR MAINTENANCE AND GROWTH OF SUCKLING CALVES GIVEN MILK REPLACER

  • Sekine, J.;Oura, R.;Morita, Z.;Morooka, T.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제1권2호
    • /
    • pp.61-63
    • /
    • 1988
  • A total of 38 energy balance trials were done for calves fed a liquid milk replacer, calf starter and second cut mixed hay. Milk replacer supplied 81% of the total dietary energy. Live weight of calves averaged 54.1 (S.D 6.2) kg and daily gain 0.37 (${\pm}0.23$)kg. The metabolizability of gross energy averaged 0.822. A regression was calculated relating energy retention (ER, $kJ/kg^{0.75}$) to the intake of metabolizable energy (IME, $kJ/kg^{0.75}$): ER = 0.72 (${\pm}0.12$) IME - 330, r = 0.702, P < 0.01, $S.E.{\pm}18.0$. Metabolizable energy for maintenance (MEm) was calculated to be $458kJ/kg^{0.75}$ when ER = 0. The amount of IME over MEm for an individual animal (Meg, $kJ/kg^{0.75}$) was regressed on averaged daily gain (ADG, kg): Meg = 413 (${\pm}91$) ADG + 0.2, r = 0.650, P < 0.01, $S.E.{\pm}21$. The amount of ME requirement for suckling calves was estimated using values obtained above.

Effects of Restricted Feeding on Intake, Digestion, Nitrogen Balance and Metabolizable Energy in Small and Large Body Sized Sheep Breeds

  • Kamalzadeh, A.;Aouladrabiei, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권5호
    • /
    • pp.667-673
    • /
    • 2009
  • Ninety six intact male sheep (12 months old with mean live weight of about 35 kg) were used to assess the effects of restricted feeding on intake, digestion, nitrogen balance and metabolizable energy (ME). The animals were selected from two known Iranian small and large body size breeds: 48 Sangsari (S) and 48 Afshari (A), and were divided into two equal groups: restricted (R) and a control (C). Each group had 48 sheep (24 each breed). The experiment had a duration of 15 and 75 days adaptation and treatment periods, respectively. The animals were individually placed in metabolism cages and fed a diet based on pelleted concentrate mixture consisting of alfalfa, barley grain, cottonseed meal and barley straw. The animals in group C were fed ad libitum, while animals in group R were fed at maintenance level and maintained a relatively constant live weight. During the experiment, the average daily weight gain (ADG) of S and A animals in R group was 0.34 and -0.25 g/d (0.02 and -0.02 $g/kg^{0.75}/d$), respectively. While that of S and A animals in C group was 174.4 and 194.4 g/d (10.16 and 11.48 $g/kg^{0.75}/d$), respectively. Nitrogen (N) was determined by both measured and regression methods. Animals of R group stayed at about zero N balance (0.01 and -0.00 g $N/kg^{0.75}/d$ for S and A animals, respectively). The N retention of animals of both S and A breeds in C group were similar (0.45 and 0.46 g $N/kg^{0.75}/d$, respectively). Digestible organic matter intake (DOMI) and ME requirement for maintenance (MEm) were measured by both constant weight technique and regression method by regressing N balance on DOMI and ME intake on ADG. The measured DOMI during constant weight was 24.61 and 24.27 g $DOMI/kg^{0.75}/d$ and the calculated DOMI from regression equation was 24.24 and 24.22 g $DOMI/kg^{0.75}/d$, for S and A animals, respectively. The measured MEm was 402 and 401 kJ $ME/kg^{0.75}/d$ and the calculated MEm from regression analysis was 398 and 400 kJ $ME/kg^{0.75}/d$ for S and A breeds, respectively. There were no significant differences between both measured and regression techniques. There was no significant difference between S and A breeds for DOMI, N retention, MEm, digestibility and metabolizability values. Digestibility values for OM, GE and CP and metabolizability were significantly (p<0.05) higher in restricted feeding sheep compared with that of sheep fed ad libitum.

거세한우의 유지에너지 요구량 결정 (Determination of Energy Requirements for Maintenance in Hanwoo Steers)

  • 김경훈;오영균;김원;이상철;신기준;전병태
    • Journal of Animal Science and Technology
    • /
    • 제46권2호
    • /
    • pp.193-200
    • /
    • 2004
  • 본 연구는 거세우가 1일 필요로 하는 유지를 위한 에너지요구량을 구하기 위해 실시하였다. 유지를 위한 에너지요구량 실험은 6개월령에 거세한 평균체중 376.6$\pm$12.5kg의 한우 9두를 공시하였고, 사료에너지 섭취수준은 배합사료와 볏짚의 비율을 56:44로 하면서 유지 수준(Maintenance)의 약 0.8배(0.8M), 1.2배(1.2M), 1.6배(1.6M) 섭취할 수 있도록 사료급여량으로 조절하여 에너지 균형법에 의해 실시하였다. 대사체중당 총 건물섭취량은 0.8M, 1.2M 그리고 1.6M이 각각 48.5, 64.9그리고 86.5g/$BW^{0.75}$을 섭취한 것으로 나타났고, 에너지 및 단백질의 농도가 같았던 본 시험사료는 건물섭취량을 증가시켜 총에너지 섭취량을 높여도 건물, 유기물, 조단백질, 조섬유, 조지방, 가용무질소물의 소화율에는 영향이 없었다. 평균 대사체중당 총 에너지섭취량은 0.8M, 1.2M, 1.6M에서 각각 190.8, 255.8, 340.9kcal/$BW^{0.75}$이었고, 분으로 손실된 에너지는 총 에너지섭취량의 약 41% 수준, 뇨로 손실된 에너지는 1.5% 이하였다. 또한 반추위 발효과정에서 발생하는 메탄에 의한 에너지 손실은 5${\sim}$9%의 범위였으며, 체열에 의한 손실량은 40${\sim}$60% 이었다. 0.8M, 1.2M, 1.6M의 에너지 수준별 대사에너지 섭취량, 92.6, 134.8, 181.0kcal/$BW^{0.75}$과 각각의 체축적에너지 -20.7, 6.2, 38.5kcal/BW0.75과의 관계식에서 X축 절편값, 즉 유지를 위한 에너지요구량은 대사에너지로 124.3kcal $ME/BW^{0.75}$로 나타났다.

Nutrient Utilization, Body Composition and Lactation Performance of First Lactation Bali Cows (Bos sondaicus) on Grass-Legume Based Diets

  • Sukarini, I.A.M.;Sastradipradja, D.;Sutardi, T.;Mahardika, IG.;Budiarta, IG.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권12호
    • /
    • pp.1681-1690
    • /
    • 2000
  • A study on energy and protein utilization, and milk production of Bali cows on grass-legume diets was carried out using 12 first lactation cows (initial BW $263.79{\pm}21.66kg$) during a period of 16 weeks starting immediately post calving. The animals were randomly allotted into 4 dietary treatment groups R1, R2, R3 and R4, receiving from the last 2 months of pregnancy onwards, graded improved rations based on a mixture of locally available grass and legume feed ad libitum. R1 contained on a DM basis 70% elephant grass (PP, Penisetum purpureum) plus 30% Gliricidia sepia leaves (GS), R2 was 30% PP plus 55% GS supplemented with 15% Hibiscus tilliactus leaves (HT, defaunating effect), R3 and R4 were 22.5% PP+41.25% GS+11.25% HT+25% concentrate, where R3 was not and R4 supplemented with zinc di-acetate. TDN, CP and zinc contents of the diets were 58.2%, 12.05% and 18.3 mg/kg respectively for R1, 65.05%, 16.9% and 25.6 mg/kg respectively for R2, 66.03%, 16.71% and 29.02 mg/kg respectively for R3 and 66.03%, 16.71% and 60.47 mg/kg respectively for R4. Milk production and body weight were monitored throughout the experimental period. In vivo body composition by the urea space technique validated by the body density method and supported by carcass data was estimated at the start and termination of the experiment. Nutrient balance and rumen performance characteristics were measured during a balance trial of 7 days during the 3rd and 4th week of the lactation period. Results indicated that quality of ration caused improvement of ruminal total VFA concentration, increments being 52 to 65% for R2, R3 and R4 above R1, with increments of acetate being less (31 to 48%) and propionate being proportionally more in comparison to total VFA increments. Similarly, ammonia concentrations increased to 5.24 to 7.07 mM, equivalent to 7.34 to 9.90 mg $NH_3-N/100ml$ rumen fluid. Results also indicated that feed quality did not affect DE and ME intakes, and heat production (HP), but increased GE, UE, energy in milk and total retained energy (RE total) in body tissues and milk. Intake-, digestible- and catabolized-protein, and retained-protein in body tissues and milk (Rprot) were all elevated increasing the quality of ration. Similar results were obtained for milk yield and components with mean values reaching 2.085 kg/d (R4) versus 0.92 kg/d (R1) for milk yield, and 170.22 g/d (R4) vs 71.69 g/d (R1), 105.74 g/d (R4) vs 45.35 g/d (R1), 101.34 g/d (R4) vs 46.36 g/d (R1) for milk-fat, -protein, and -lactose, respectively. Relatively high yields of milk production was maintained longer for R4 as compared to the other treatment groups. There were no significant effects on body mass and components due to lactation. From the relationship $RE_{total}$ (MJ/d)=12.79-0.373 ME (MJ/d); (r=0.73), it was found that $ME_{m}=0.53MJ/kgW^{0.75}.d$. Requirement of energy to support the production of milk, ranging from 0.5 to 3.0 kg/d, follows the equation: Milk Prod. ($Q_{mp}$, kg/d)=[-2.48+4.31 ME($MJ/kg^{0.75}.d$)]; (r=0.6) or $Q_{mp}$=-3.4+[0.08($ME-RE_{body\;tissue}$)]MJ/d]; (r=0.94). The requirement for protein intake for maintenance ($IP_m$) equals $6.19 g/kg^{0.75}.d$ derived from the relationship RP=-47.4+0.12 IP; (r=0.74, n=9). Equation for protein requirement for lactation is $Q_{nl}$=[($Q_{mp}$)(% protein in milk)($I_{mp}$)]/100, where $Q_{nl}$ is g protein required for lactation, $Q_{mp}$ is daily milk yield, Bali cow's milk-protein content av. 5.04%, and $I_{mp}$ is metabolic increment for milk production ($ME_{lakt}/ME_{m}=1.46$).

The Influence of Different Fiber and Starch Types on Nutrient Balance and Energy Metabolism in Growing Pigs

  • Wang, J.F.;Zhu, Y.H.;Li, D.F.;Jorgensen, H.;Jensen, B.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권2호
    • /
    • pp.263-270
    • /
    • 2004
  • A repeated $4{\times}4$ Latin square design was conducted with eight ileal cannulated castrates to examine the effect of source of starch and fiber on nutrient balance and energy metabolism. Pigs were fed on one of the four experimental diets: Control diet (C) mainly based on cooked rice; and diets P, S and W with the inclusion of either raw potato starch, sugar beet pulp or wheat bran supplementation, respectively. With the exception of an increased (p<0.05) energy loss from methane production with diet S observed, no significant differences (p>0.05) in the ratio of metabolizable energy (ME)/digestible energy, the utilization of ME for fat deposition and for protein deposition, energy loss as hydrogen and urinary energy were found between diets. The efficiency of utilization of ME for maintenance was lower (p<0.05) with diets P and S than with diet C. The inclusion of fiber sources (sugar beet pulp or wheat bran) or potato starch reduced the maintenance energy requirement. The fecal energy excretion was increased (p<0.05) with either sugar beet pulp or wheat bran supplementation, while it was unaffected (p>0.05) by addition of potato starch. In comparison with diets C and P, a lowered ileal or fecal digestibility of energy with diets S and W was observed (p<0.05). Feeding sugar beet pulp caused increased (p<0.05) daily production of methane and carbon dioxide and consequently increased energy losses from methane and carbon dioxide production, while it did not influence the daily hydrogen production (p>0.05). An increased (p<0.05) proportion of NSP excreted in feces was seen by the supplementation of wheat bran. Higher NSP intake caused an increased daily amount of NSP in the ileum, but the ileal NSP proportion as a percentage of NSP intake was unaffected by diets. Feeding potato starch resulted in increased daily amount of starch measured in the ileum and the proportion of ileal starch as a percentage of starch intake, while no significant influence on fecal starch was found. Higher (p<0.05) daily amount of fecal starch and the proportion of fecal starch as a percentage of starch intake were found with fiber sources supplementation compared with diets C and P. By increasing the dietary NSP content the fecal amount of starch increased (p<0.01).

Effects of Non-protein Energy Intake on the Concentrations of Plasma Metabolites and Insulin, and Tissue Responsiveness and Sensitivity to Insulin in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki;Shiga, Akio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.1010-1018
    • /
    • 2006
  • A glucose clamp technique was used to investigate the effects of non-protein energy intake on tissue responsiveness and sensitivity to insulin for glucose metabolism in intact adults male goats. Three goats were fed diets at 1.0, 1.5 and 2.0 times of ME for maintenance, each for 21 d. Crude protein intake was 1.5 times of maintenance requirement in each treatment. Tissue responsiveness and sensitivity to insulin were evaluated using a hyperinsulinemic euglycemic clamp technique with four levels of insulin infusion, beginning at 13 h after feeding. Concentrations of plasma metabolites and insulin were also measured at 3, 6 and 13 h after feeding, for evaluating effects of non-protein energy intake on the metabolic status of the animals. Increasing non-protein energy intake prevented an increase in plasma NEFA concentration at 13 h after feeding (p = 0.03). Plasma urea-nitrogen and total amino-nitrogen concentrations decreased (p<0.01) and increased (p = 0.03), respectively, with increasing non-protein energy intake across time relating to feeding. Plasma insulin concentration was unaffected (p = 0.43) by non-protein energy intake regardless of time relating to feeding. In the glucose clamp experiment, increasing non-protein energy intake decreased numerically (p = 0.12) the plasma insulin concentration at half-maximal glucose infusion rate (insulin sensitivity), but did not affect (p = 0.60) maximal glucose infusion rate (tissue responsiveness to insulin). The present results suggest that an increase in non-protein energy intake may enhance insulin sensitivity for glucose metabolism, unlike responsiveness to insulin, in adult male goats. The possible enhancement in insulin sensitivity may play a role in establishing anabolic status in the body, when excess energy is supplied to the body.

육성기 거세한우의 유지에너지 요구량 결정에 관한 연구 (Determination of Maintenance Energy Requirements for Growing Hanwoo Steers)

  • 설용주;김경훈;백열창;이상철;옥지운;이강연;홍성구;장선식;최창원;송만강;이성실;오영균
    • Journal of Animal Science and Technology
    • /
    • 제53권2호
    • /
    • pp.155-160
    • /
    • 2011
  • 본 시험은 생후 6개월 령의 육성기 거세한우 6두($180.6{\pm}3.1$ kg)를 공시하여 옥수수 위주의 농후사료 60%와 티모시 건초 40% 비율로 급여하였고 TDN 함량은 71.4%, CP는 14.6%이었다. 시험은 Korean Feeding Standard for Hanwoo (2007)에 따라 일당 증체량 0 kg, 0.4 kg, 0.7 kg/일에 필요한 각각의 TDN 함량 1.70 kg (Low), 2.05 kg (Medium), 2.80 kg (High)의 공시사료를 섭취할 수 있도록 하는 duplicated 3 ${\times}$ 3 Latin square design으로 수행하였다. 에너지 수준에 따른 급여사료는 전량 섭취하였고, 일반적으로 건물섭취량의 증가가 반추위 통과속도를 높이기 때문에 소화율이 낮아지지만 본 실험에서는 건물, 조단백질, 조지방, 조섬유의 소화율은 차이가 없었다 (P>0.05). 섭취 에너지 수준별 평균 대사 체중 당 총에너지 섭취량은 180.2, 292.7와 337.2 kcal/$BW^{0.75}$이었다(P<0.001). 처리구별 총 에너지섭취량이 증가하면서 분으로 손실된 에너지도 51.1에서 99.71kcal/$BW^{0.75}$로 유의적으로 증가함(P<0.001)에 따라 가소화에너지는 약 70%로 처리 간 차이가 없었다. 뇨로 손실된 에너지는 3.5에서 7.9 kcal/$BW^{0.75}$로 유의적으로 증가하였고(P<0.03), 반추위 발효과정에서 발생되는 메탄가스에 의한 에너지 손실도 15.0에서 20.5 kcal/$BW^{0.75}$로 증가하는 경향을 보였다(P=0.06). 체열에 의한 손실량은 수준별로 차이가 없었지만, 총에너지섭취량(GE)에 대한 비율은 60.4, 41.2와 34.1%로 에너지 섭취량이 높아질수록 감소하였다. 대사에너지 섭취량 수준 110.6, 186.3, 209.1 kcal/$BW^{0.75}$와 각각의 체 축적 에너지 1.67, 65.76, 94.25 kcal/$BW^{0.75}$의 관계식을 통해 구한 X축 절편 값, 즉 유지를 위한 에너지 요구량은 109.8 kcal/$BW^{0.75}$로 나타났다.