• Title/Summary/Keyword: Main-excavation

Search Result 200, Processing Time 0.027 seconds

Analysis of hydraulic behavior around tunnel after application of cutoff grouting and proposing a method for estimating grouting range (차수그라우팅 적용에 따른 터널주변 수리학적 거동 분석과 그라우팅 적용범위 산정방법의 제안)

  • Joon-Shik Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.79-89
    • /
    • 2024
  • Excessive inflow of groundwater during tunnel excavation not only affects the stability and constructability of the tunnel, but is also one of the main causes of ground settlement due to groundwater level drawdown. The most commonly applied measure against excessive groundwater inflow during tunnel excavation in soil or fractured zone is to reduce the ground permeability coefficient by injecting grout material. Generally, the grouting area is assumed to be same as the plastic zone that occurs during tunnel excavation, but injecting grout material in the area of plastic zone is appropriate only for reinforcement grouting. In order to determine the thickness of cutoff grouting, the amount of reduction in the water permeability coefficient due to the application of cutoff grouting must be considered. In this study, a method for estimating the range of cutoff grouting considering the reduction in permeability coefficient was mathematically derived and evaluated through computer numerical analysis.

The Study on the Compressive Strength Properties of Mortar using Discarded Bentonite Powder by the Cooling Method after Heat Treatment (폐벤토나이트 분말의 소성 및 냉각조건에 따른 모르터의 압축강도 발현특성에 관한 연구)

  • Kim, Hyo-Youl
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various enviromental trouble as soil and water pollution est. Therefore, this study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted flow test & compressive strength on age of mortar using discarded Bentonite powder. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 600℃. 60min & cooling using of water.

DSM Application for Deep Excavation in Singapore (싱가포르 지역 깊은 굴착을 위한 지반개량공법 DSM의 적용 사례)

  • Chun, Youn-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2425-2433
    • /
    • 2011
  • DSM (Deep Soil Mixing) is to establish soil-cement column by injecting of cement slurry and blending it in soft ground and have been introduced to Singapore in 1980s and now a days quite popular and considered as alternative method to the jet grouting for temporary earth retaining works and foundations. Herein this paper, the results of lab mixing test based on comparison of characteristics between OPC (Original Portland Cement) and PBFC (Portland Blast Furnace Slag Cement), DSM field trial test and main installation results including monitoring, was presented and it would be referred to similar site later.

Main challenges for deep subsea tunnels based on norwegian experience

  • Nilsen, Bjorn
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.563-573
    • /
    • 2015
  • For hard rock subsea tunnels the most challenging rock mass conditions are in most cases represented by major faults/weakness zones. Poor stability weakness zones with large water inflow can be particularly problematic. At the pre-construction investigation stage, geological and engineering geological mapping, refraction seismic investigation and core drilling are the most important methods for identifying potentially adverse rock mass conditions. During excavation, continuous engineering geological mapping and probe drilling ahead of the face are carried out, and for the most recent Norwegian subsea tunnel projects, MWD (Measurement While Drilling) has also been used. During excavation, grouting ahead of the tunnel face is carried out whenever required according to the results from probe drilling. Sealing of water inflow by pre-grouting is particularly important before tunnelling into a section of poor rock mass quality. When excavating through weakness zones, a special methodology is normally applied, including spiling bolts, short blast round lengths and installation of reinforced sprayed concrete arches close to the face. The basic aspects of investigation, support and tunnelling for major weakness zones are discussed in this paper and illustrated by cases representing two very challenging projects which were recently completed (Atlantic Ocean tunnel and T-connection), one which is under construction (Ryfast) and one which is planned to be built in the near future (Rogfast).

An Experimental Study on the Pozzolan Reaction of discarded Bentonite by the Cooling Method after Heat Treatment (소성가공한 폐 벤토나이트 분말의 냉각방법에 따른 포졸란 반응성에 관한 실험적 연구)

  • Kim, Hyo-Yeul;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.139-146
    • /
    • 2002
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, it is increased using quantity on construction industry day by day. But, the discarded bentonite that is over using at underground excavation works is caused various environmental trouble as soil and water pollution est. This study aims to propose a foundamental report for pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out pozzolan reaction ability of discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments are excuted Phenolphtalein test, setting test, pH test and the analysis by X-ray diffractor. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, pozzolan reaction ability of discarded Bentonite powder is superior to the situation of 50$0^{\circ}C$~$700^{\circ}C$, 60min.

An Experimental Study on the Strength-Development Properties of Mortar with Discarded Bentonite Powder (폐 벤토나이트 분말을 흔입한 모르터의 강도 발현 특성에 관한 실험적 연구)

  • 정민수;김효열;안재철;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.2-29
    • /
    • 2003
  • As the bentonite is main material to prevent from collapse of drilling hole at underground excavation works, the quantity of bentonite is increasingly used on construction industry day by day. But, the discarded bentonite that is excessively used at underground excavation works causes various environmental trouble such as soil and water pollution etc. Therefore, this study aims to propose a foundamental report about pozzolan reaction of discarded Bentonite powder by heat-treatment and cooling as concrete mineral admixture. To find out the strength-development properties of mortar with discarded Bentonite powder by indirect cooling & cooling using of water after heat-treatment, the experiments such as flow test, and compressive strength test on curing age of mortar are excuted. As a result of this study, discarded Bentonite powder can be utilized as concrete mineral admixture by heat-treatment and especially, the strength-development properties of mortar mixing with discarded Bentonite powder is superior to the situation of $600^{\circ}C$.60min-cooling using of water.

  • PDF

Development of Stage-Cut Method for medium depth Shaft in Korea (국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발)

  • Hong, Chang-Soo;Lee, Ji-Su;Hwang, Dae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

Analysis of the peak particle velocity and the bonding state of shotcrete induced by the tunnel blasting (발파시 터널 숏크리트의 최대입자속도와 부착상태평가 분석)

  • Hong, Eui-Joon;Chang, Seok-Bue;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.247-255
    • /
    • 2010
  • Bonding strength of shotcrete is a significant influential factor which plays the role of collapse prevention of tunnel crown and of debonding prevention of shotcrete induced by the blasting vibration. Thus, the evaluation of the shotcrete bonding state is one of the core components for shotcrete quality control. In this study, the peak particle velocities induced by blasting were measured on the shotcrete in a tunnel construction site and its effect on the bonding state of shotcrete is investigated. Drilling and blasting technique was used for the excavation of intersection tunnel connecting the main tunnel with the service tunnel. Blast-induced vibrations were monitored at some points of the main tunnel and the service tunnel. The shotcrete bonding state was evaluated by using impact-echo test coupled with the time-frequency domain analysis which is called short-time Fourier transformation. Analysis results of blast-induced vibrations and the time-frequency domain impact-echo signals showed that the blasting condition applied to the excavation of intersection tunnel hardly affects on the tunnel shotcrete bonding state. The general blasting practice in Korea was evaluated to have a minor negative impact on shotcrete quality.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.