• Title/Summary/Keyword: Main-Memory Database

Search Result 120, Processing Time 0.023 seconds

The Des inn and Implementation of Query Engine for Main Memory Database System (주기억 데이터베이스 시스템 질의 엔진의 설계 및 구현)

  • 이경식;김경창
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.121-123
    • /
    • 2002
  • 본 논문에서는 주기억 데이터베이스 시스템을 위만 질의처리 엔진의 설계 및 구현에 대해서 설명하였다. 이를 바탕으로 Embedded SQL 지원을 위한 Pre-compiler 구현 방법 , 단순 질의 및 Join 과정에서의 주기억 장치의 효율적인 사용 방법 , Cursor, Dynamic SQL 처리 방법에 대해 소개하였다.

  • PDF

A Disk Group Commit Protocol for Main-Memory Database Systems (주기억 장치 데이타베이스 시스템을 위한 디스크 그룹 완료 프로토콜)

  • 이인선;염헌영
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.516-526
    • /
    • 2004
  • Main-Memory DataBase(MMDB) system where all the data reside on the main memory shows tremendous performance boost since it does not need any disk access during the transaction processing. Since MMDB still needs disk logging for transaction commit, it has become another bottleneck for the transaction throughput and the commit protocol should be examined carefully. There have been several attempts to reduce the logging overhead. The pre-commit and group commit are two well known techniques which do not require additional hardware. However, there has not been any research to analyze their effect on MMDB system. In this paper, we identify the possibility of deadlock resulting from the group commit and propose the disk group commit protocol which can be readily deployed. Using extensive simulation, we have shown that the group commit is effective on improving the MMDB transaction performance and the proposed disk group commit almost always outperform carefully tuned group commit. Also, we note that the pre-commit does not have any effect when used alone but shows some improvement if used in conjunction with the group commit.

Enhancing the performance of taxi application based on in-memory data grid technology (In-memory data grid 기술을 활용한 택시 애플리케이션 성능 향상 기법 연구)

  • Choi, Chi-Hwan;Kim, Jin-Hyuk;Park, Min-Kyu;Kwon, Kaaen;Jung, Seung-Hyun;Nazareno, Franco;Cho, Wan-Sup
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1035-1045
    • /
    • 2015
  • Recent studies in Big Data Analysis are showing promising results, utilizing the main memory for rapid data processing. In-memory computing technology can be highly advantageous when used with high-performing servers having tens of gigabytes of RAM with multi-core processors. The constraint in network in these infrastructure can be lessen by combining in-memory technology with distributed parallel processing. This paper discusses the research in the aforementioned concept applying to a test taxi hailing application without disregard to its underlying RDBMS structure. The application of IMDG technology in the application's backend API without restructuring the database schema yields 6 to 9 times increase in performance in data processing and throughput. Specifically, the change in throughput is very small even with increase in data load processing.

Main Memory Spatial Database Clusters for Large Scale Web Geographic Information Systems (대규모 웹 지리정보시스템을 위한 메모리 상주 공간 데이터베이스 클러스터)

  • Lee, Jae-Dong
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.3-17
    • /
    • 2004
  • With the rapid growth of the Internet geographic information services through the WWW such as a location-based service and so on. Web GISs (Geographic Information Systems) have also come to be a cluster-based architecture like most other information systems. That is, in order to guarntee high quality of geographic information service without regard to the rapid growth of the number of users, web GISs need cluster-based architecture that will be cost-effective and have high availability and scalability. This paper proposes the design of the cluster-based web GIS with high availability and scalability. For this, each node within a cluster-based web GIS consists of main memory spatial databases which accomplish role of caching by using data declustering and the locality of spatial query. Not only simple region queries but also the proposed system processed spatial join queries effectively. Compare to the existing method. Parallel R-tree spatial join for a shared-Nothing architecture, the result of simulation experiments represents that the proposed spatial join method achieves improvement of performance respectively 23% and 30% as data quantity and nodes of cluster become large.

  • PDF

T-Tree Index Structures Utilizing Prefetch Methods (프리패치 기법을 적용한 T.트리 인덱스 구조)

  • Lee, Ig-Hoon;Shim, Jun-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.119-131
    • /
    • 2009
  • During a decade, e-Commerce environments supporting real-time transaction processing have been getting larger. In telecommunication and financial environments, research and building for main memory database systems have been doing to support real-time transaction processing. A research on indexing for fast transaction support focuses on reducing cache misses or reducing memory access latency when cache misses happen. In the paper, we propose a prefetch method for tree index structures to reduce memory access latency. We present a prefetch-efficient pCST-tree and show superiority of the proposed tree by experiments.

  • PDF

Implementation of Maim Memory DBMS for Efficient Transactions based on Embedded System (임베디드 시스템 상에서의 고속 트랜잭션을 위한 메인메모리 기반 데이터베이스 시스템 구현)

  • Kim, Young-Hwan;Son, Jae-Gi;Park, Chang-Won
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.769-770
    • /
    • 2008
  • Mani Memory DataBase(MMDB) system store their data in main physical memory and provide very high-speed access. Conventional database system are optimized for the particular characteristics of disk storage mechanism. Memory resident systems, on the other hand, use different optimizations to structure and organize data, as well as to make it reliable. This paper provides a brief overview on MMDBs and the results after evaluating the performance of our simple MMDB based on Embedded system.

  • PDF

An Efficient Recovery System for Spatial Main Memory DBMS (공간 메인 메모리 DBMS를 위한 효율적인 회복 시스템)

  • Kim, Joung-Joon;Ju, Sung-Wan;Kang, Hong-Koo;Hong, Dong-Sook;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.3
    • /
    • pp.1-14
    • /
    • 2006
  • Recently, to efficiently support the real-time requirements of LBS and Telematics services, interest in the spatial main memory DBMS is rising. In the spatial main memory DBMS, because all spatial data can be lost when the system failure happens, the recovery system is very important for the stability of the database. Especially, disk I/O in executing the log and the checkpoint becomes the bottleneck of letting down the total system performance. Therefore, it is urgently necessary to research about the recovery system to reduce disk I/O in the spatial main memory DBMS. In this paper, we study an efficient recovery system for the spatial main memory DBMS. First, the pre-commit log method is used for the decrement of disk I/O and the improvement of transaction concurrency. In addition, we propose the fuzzy-shadow checkpoint method for the recovery system of the spatial main memory DBMS. This method can solve the problem of duplicated disk I/O on the same page of the existing fuzzy-pingpong checkpoint method for the improvement of the whole system performance. Finally, we also report the experimental results confirming the benefit of the proposed recovery system.

  • PDF

Block-wise Skipping for Embedded Database System (임베디드 데이터베이스 시스템을 위한 블록 단위 스키핑 기법)

  • Chong, Jae-Hyok;Park, Hyoung-Min;Hong, Seok-Jin;Shim, Kyu-Seok
    • The KIPS Transactions:PartD
    • /
    • v.16D no.6
    • /
    • pp.835-844
    • /
    • 2009
  • Today, most of all the query processors in the world generally use the 'Pipelining' method to acquire fast response time (first record latency) and less memory usage. Each of the operator nodes in the Query Execution Plan (QEP) provides Open(), Next(), and Close() functions for their interface to facilitate the iterator mechanism. However, the embedded database systems for the mobile devices, based on the FLASH memory, usually require a function like Previous(), which returns the previous records from current position. It is because that, in the embedded environment, the mobile devices cannot fully provide it main memory to store all the query results. So, whenever needed the previously read records the user (program) should re-fetch the previous records using the Previous() function: the BACKWARD data fetch. In this paper, I introduce the 'Direction Switching Problem' caused by the Previous() function and suggest 'Block-wise Skipping' method to fully utilize the benefits of the block-based data transfer mechanism, which is widely accepted by most of the today's relational database management systems.

Lock Management in n Main-Memory DBMS

  • Kim, Sang-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.62-65
    • /
    • 2002
  • The locking is the most widely-used concurrency control mechanism for guaranteeing logical consistency of a database where a number of transactions perform concurrently. In this Paper, we propose a new method for lock management appropriate in main-memory databases. Our method chooses the partition, a fixed-sized container for records. as a unit of locking. and directly keeps lock information within the Partition itself. These make our method enjoy the following advantages: (1) it has freedom in controlling of the trade-off between the system concurrency and the lock processing overhead by considering the characteristics of given target applications. (2) it enhances the overall system performance by eliminating the hashing overhead, a serious problem occurred in the traditional method.

  • PDF

Extended Buffer Management with Flash Memory SSDs (플래시메모리 SSD를 이용한 확장형 버퍼 관리)

  • Sim, Do-Yoon;Park, Jang-Woo;Kim, Sung-Tan;Lee, Sang-Won;Moon, Bong-Ki
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.308-314
    • /
    • 2010
  • As the price of flash memory continues to drop and the technology of flash SSD controller innovates, high performance flash SSDs with affordable prices flourish in the storage market. Nevertheless, it is hard to expect that flash SSDs will replace harddisks completely as database storage. Instead, the approach to use flash SSD as a cache for harddisks would be more practical, and, in fact, several hybrid storage architectures for flash memory and harddisk have been suggested in the literature. In this paper, we propose a new approach to use flash SSD as an extended buffer for main buffer in database systems, which stores the pages replaced out from main buffer and returns the pages which are re-referenced in the upper buffer layer, improving the system performance drastically. In contrast to the existing approaches to use flash SSD as a cache in the lower storage layer, our approach, which uses flash SSD as an extended buffer in the upper host, can provide fast random read speed for the warm pages which are being replaced out from the limited main buffer. In fact, for all the pages which are missing from the main buffer in a real TPC-C trace, the hit ratio in the extended buffer could be more than 60%, and this supports our conjecture that our simple extended buffer approach could be very effective as a cache. In terms of performance/price, our extended buffer architecture outperforms two other alternative approaches with the same cost, 1) large main buffer and 2) more harddisks.