• Title/Summary/Keyword: Main stream

Search Result 1,062, Processing Time 0.033 seconds

Estimating Nutrients Delivery Ratios at the Subwatershed Scale -A Case Study at the Bochung-A Watershed- (소유역 유달율 추정공식 개발 -보청A유역을 중심으로-)

  • Jeon, Ji-Hong;Choi, Dong-Hyuk;Lim, Kyung-Jae;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.27-35
    • /
    • 2010
  • The characteristics of delivered nutrient loads were analyzed and the regression equations to estimate delivery ratios of nutrients (TN and TP) were developed using HSPF simulation results at six subwatersheds within the Bochung A unit watershed during 1998-2007. TN delivery ratio was higher than TP delivery ratio because significant amounts of TP was considered to be attached at soil as ${PO_4}^-$ during delivery process from discharged point of nutrient source to main stream. As a results of correlation analysis, factors related to geomorphic characteristics had not statistical correlation with TN and TP delivery ratios. TN loading rate from living and specific stream flow had statistical negative and positive correlation, respectively, with TN delivery ratio. TP loading rates from all sources and from land cover and specific stream flow had statistical negative, negative and positive correlation, respectively. The specific stream flow represents the most strong correlation with nutrient delivery ratios. The regression equations to estimate delivery ratios for TN and TP were developed by including statistical correlated factors and showed high efficiency of 0.98 and 0.95 of coefficient of determination for TN and TP, respectively.

Impacts of Impevious Cove Change on Pollutant Loads from the Daejeon-Stream Watershed Using AnnAGNPS (논문 - AnnAGNPS를 이용한 대전천 유역의 불투수면 변화에 따른 배출부하량 평가)

  • Chang, Seung-Woo;Kang, Moon-Seong;Song, In-Hong;Chung, Se-Woong
    • KCID journal
    • /
    • v.18 no.2
    • /
    • pp.3-14
    • /
    • 2011
  • Increased impervious surfaces alter stream hydrology resulting in lower flows during droughts and higher peak flows during floods. Not only urban area but also rural area has been expanded impervious surfaces because of increasing of greenhouses. The main objective of this study was to evaluate the performance of the AnnAGNPS (Annualized Non-Point Source Pollution Model) on the surface runoff characteristics of the Daejeon-Stream watershed, and to predict the hydrological effects due to increasing of impervious surfaces. The model parameters were obtained from the geographical information system (GIS) databases, and additional parameters calibrated with the observed data. The model was calibrated by using 2004 of the runoff data and validated by using 2002 data obtained from WAMIS (Water Management Information System) to compare the simulated results for the study watershed. R2 values and efficiency index (EI) between observed and simulated runoff were 0.78 and 0.80, respectively at the calibration period. In this study, expanding of impervious surfaces such as greenhouses caused increasing of surface runoff, but caused decreasing of total nitrogen and total phosphorus loads.

  • PDF

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.

Application of Grouping Method to select Priority Restoration Streams in Geumgang Watershed based on Analysis of Pollution Factors (하천수질 오염요소 분석을 근거로 금강수계의 우선정비 대상하천 선정을 위한 집단화 기법적용)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.661-669
    • /
    • 2013
  • River-water quality has been greatly improved during past several decades with the extraordinary expansion for the wastewater treatment capacities by the government. Research aims to select the priority restoration streams based on the chronicle data for tributaries in Geumgang watershed as the main stream area in the Chungchungnamdo province. The quality of BOD, phosphorus and percent of sewered population on 15 branch streams were compared by the grouping methods. The results of group D streams by category I that exceed 3.0 mg/L for BOD and 0.1 mg/L for phosphorus were Seuksung, Ganggyung and Bangchuk stream. The results of group D streams by category II that exceed 3.0 mg/L for BOD and less than 63.5 % of average percent of sewered population were Ganggyung, Gilsan, Bangchuk and Seuksung stream. The final results of selected streams drawn by the chronicle data which exceeded the standard quality and lower than the average percent of sewered population were Seoksung, Gangeyung and Bangchuk stream. The pollution of rivers in the down streams were more serious than in the upper streams. Their watersheds have to be improved river water quality, especially to extend sewer systems as well as wastewater treatment facilities.

A Study on the Nature-friendly Management Regarding the User Pattern of Yangjae Stream (양재천의 이용특성을 고려한 환경친화적 관리방안에 관한 연구)

  • Kim Sun-Hee;Hong Suk-Hwan;Bae Jung-Nam
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.3
    • /
    • pp.306-315
    • /
    • 2004
  • Yangjae stream, stretching through Seocho-gu and Gangnam-gu, is a representative city stream with its environmentally friendly stream makeover project model, launched in 1995. The district of Gangnam-gu, the subject of this study, is under high pressure from the residents for its use as a huge residential areas close to the stream. The study has two main purposes. The first is to identify the condition and characteristic of utilization of Yangjae stream which is currently being increased in use by the stream restoration. Secondly, the study aims to suggest the environment-friendly management to accomplish arrangement of the naturally friendly stream based on the identification survey, The result from the user survey with 303 valid answer sheets show that the people from neighboring residential areas use this stream a lot doing exercising(51.8%) and taking a walk(24.4%) in their free time. Also regular use rate is high, and people are likely to use it alone(30.4%) or as a family(28.4%). With regard to the need of facility increase, even though the respondents required resting places in the shade(80.8%) most, overall, additional introduction of facilities was analyzed as unnecessary(78.8%). safety issue(22.0%) and a lack of convenience facilities(17.6%) and resting places in the shade(16.6%) are pointed as main problems while the users are generally satisfied(59.5%) with the stream. Improving walk-way and planting trees for shade on the slope were designed as a solution for these problems. For securing safety through improvement of walk-way, the scattering of pressure of current walk with building new walk using berms was presented. In order to increase safety on the walk-way(see above figure), the study proposes to build a new walk-way with berms to disperse excessive pressure. It also suggests the tree planting to provide shade in the stream and to make a provision for the planting of forest trees in the current law.

Numerical Simulation of 3-Dimensional Fluid Flow and Dust Concentrations in a Steel Foundry (제강 작업장내 삼차원 유동장 및 먼지농도의 수치 모사)

  • Cho, Hyun-Ho;Hong, Mi-Ok;Cho, Seog-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The steel foundries with electric arc furnaces handling metal scraps have recently gained an attention as a potential source of dusts. The present study focuses on the analysis of dust emissions and removals during furnace charging and melting processes by commercial CFD software named FLUENT. A body fitted grid system consisting of 880,000 meshes was first generated by Gambit for the electric arc furnace with the capacity of 60 ton/cycle and then FLUENT was invoked to solve the corresponding NavierStokers equation for the momentum, temperature and dust concentration. The entire processes from metal charging to metal melting were simulated to investigate the unsteady behaviors of fluid flows and dust concentrations. The model simulation results showed that as the top of the electric arc furnace opened for metal charging, hot plumes bursted out from the furnace rose strongly by buoyance and escaped mostly through the main hood. Therefore, the capacity of main hoods determined the vent efficiency in the metal charging process. As the furnace was closed after the metal charging and the metal melting processes was followed, the hot flow stream stretching from the furnace to the main hood was dissipated fast and the flow from the inlet of the bottom of the left hand side to the main and monitoring hoods constituted the main stream. And there was only a slow flow in the right hand side of the furnace. Therefore, the dust concentrations were calculated higher in the left hand side of the furnace, which was consistent with observations.

Distribution, Preservation Characteristics of Land and River Natural Aggregates in Nonsan City, Korea (논산시 하천 및 육상 골재 자원의 부존 현황과 특성)

  • Hyun Ho Yoon;Sei Sun Hong;Min Han;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.143-159
    • /
    • 2024
  • Natural aggregate is an essential resource for human activities, closely related to construction. The aggregate demand has been increasing annually, and due to the nature of the resource, it is difficult to procure from distant locations. This study identifies the distribution and characteristics of aggregate-bearing areas as part of a municipal-level aggregate resource survey conducted in Nonsan City, Korea, in 2023. Nonsan City is located approximately 35 km straight distance from the Geum River estuary and lies at the passageway of the main stream of the Geum River. The topography of Nonsan City features eastern mountainous areas and western plains, creating an east-high-west-low geomorphic setting, with 33 streams distributed across the city, including tributaries of the Geum River like Nonsan Stream, Noseong Stream, and Ganggyeong Stream. All streams originate from the highlands in the north and east, converge with Nonsan Stream, and then join the west bank of the main stream of the Geum River at the western boundary of Nonsan City. Drilling core results show shallow depths in the highlands to the north and east, deepening towards the west, reaching a maximum depth of 25 m near the main stream of the Geum River. The total reserve of land aggregates is calculated to be 246,789,000 m3, with a developable amount of 172,750,000 m3. The total reserve of river aggregates is 5,236,000 m3, with a developable amount of 3,765,000 m3. The distribution of aggregates varies according to the geomorphic, geologic, and development pattern of the river system. Reserves are scarce in mountainous areas but are abundant in regions with rivers and wide alluvial plains, although reserves appear at depths greater than 4m. The distribution of aggregate resources in Nonsan City is influenced by stream activities and sea level changes, with the tidal range of the Yellow Sea acting as an unfavorable condition for the preservation of aggregate resources.

Effects of Habitat Disturbance on Fish Community Structure in a Gravel-Bed Stream, Korea (자갈하천에서 서식처 교란이 어류 군집구조에 미치는 영향)

  • Kim, Seog Hyun;Lee, Wan-Ok;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.49-60
    • /
    • 2014
  • Fish assemblages play an integral role in stream ecosystem and are influenced by stream environmental conditions and habitat disturbances. Fish community structures and habitat parameters of U.S. EPA rapid bio-assessment protocol were surveyed to investigate the effect of stream environment and habitat disturbance on fish communities at 13 study sites in the Gapyeong Stream, a typical gravel-bed stream. Principal component analysis (PCA) based on data from habitat assessment at each study site indicated that the study sites were differentiated by habitat parameters such as embeddedness, velocity/depth regime and sediment deposition, which were related with bed slope. A total of 46 species belonging to 12 families were collected in the Gapyeong Stream. A dominant species was Zacco koreanus, subdominant species was Z. platypus. Hierarchical cluster analysis based on species abundance classified fish communities into the three main groups along the stream longitudinal change. Non-metric multidimensional scaling (NMDS) portrayed that fish community structures were related to major habitat parameters, i.e., epifaunal substrate/available cover, embeddedness, velocity/depth regime, sediment deposition, channel alternation and frequency of riffles. These results suggested that fish community structures were primary affected by the longitudinal environmental changes, and those were modified by habitat disturbance in the Gapyeong Stream, a gravel-bed stream.

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes (2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.557-566
    • /
    • 2018
  • Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.

Efficient Computation of Stream Cubes Using AVL Trees (AVL 트리를 사용한 효율적인 스트림 큐브 계산)

  • Kim, Ji-Hyun;Kim, Myung
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.597-604
    • /
    • 2007
  • Stream data is a continuous flow of information that mostly arrives as the form of an infinite rapid stream. Recently researchers show a great deal of interests in analyzing such data to obtain value added information. Here, we propose an efficient cube computation algorithm for multidimensional analysis of stream data. The fact that stream data arrives in an unsorted fashion and aggregation results can only be obtained after the last data item has been read. cube computation requires a tremendous amount of memory. In order to resolve such difficulties, we compute user selected aggregation fables only, and use a combination of an way and AVL trees as a temporary storage for aggregation tables. The proposed cube computation algorithm works even when main memory is not large enough to store all the aggregation tables during the computation. We showed that the proposed algorithm is practically fast enough by theoretical analysis and performance evaluation.