• Title/Summary/Keyword: Main protease

Search Result 43, Processing Time 0.02 seconds

Effect of Nicotine on the Various Enzymes' Activity (효소활성에 미치는 니코틴의 영향)

  • 이미자;이상하
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.9 no.2
    • /
    • pp.69-75
    • /
    • 1987
  • Nicotine, the main alkaloid of tobacco, showed different effect according to the enzyme. Among investigated enzymes, protease was inactivated remarkably by nicotine and the mode of inhibition was examined. $\alpha$-amylase and $\beta$-amylase were not affected, and cellulase and glucoamylase were inactivated partially when the concentration of it was over 1.0% , but protease was inhibited powerfully by nicotine The inhibition of protease by nicotine was performed almost in the initial stage of reaction, and was not so much affected by temperature, and was reversible. The inhibition type of protease by nicotine appeared as a Mixed-type inhibition.

  • PDF

The N-terminal peptide of the main protease of SARS-CoV-2, targeting dimer interface, inhibits its proteolytic activity

  • Sunyu Song;Yeseul Kim;Kiwoong Kwak;Hyeonmin Lee;Hyunjae Park;Young Bong Kim;Hee-Jung Lee;Lin-Woo Kang
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.606-611
    • /
    • 2023
  • The main protease (Mpro) of SARS-CoV-2 cleaves 11 sites of viral polypeptide chains and generates essential non-structural proteins for viral replication. Mpro is an important drug target against COVID-19. In this study, we developed a real-time fluorometric turn-on assay system to evaluate Mpro proteolytic activity for a substrate peptide between NSP4 and NSP5. It produced reproducible and reliable results suitable for HTS inhibitor assays. Thus far, most inhibitors against Mpro target the active site for substrate binding. Mpro exists as a dimer, which is essential for its activity. We investigated the potential of the Mpro dimer interface to act as a drug target. The dimer interface is formed of domain II and domain III of each protomer, in which N-terminal ten amino acids of the domain I are bound in the middle as a sandwich. The N-terminal part provides approximately 39% of the dimer interface between two protomers. In the real-time fluorometric turn-on assay system, peptides of the N-terminal ten amino acids, N10, can inhibit the Mpro activity. The dimer interface could be a prospective drug target against Mpro. The N-terminal sequence can help develop a potential inhibitor.

Recombinant Expression and Enzyme Activity of Chymotrypsin-like Protease from Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae)

  • Park, Kwan Ho;Choi, Young Cheol;Nam, Sung Hee;Kim, Won Tae;Kim, A Young;Kim, Sin Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.181-185
    • /
    • 2012
  • Chymotrypsin serine protease is one of the main digestive proteases in the midgut of and is involved in various essential processes. In a previous study, a gene encoding a chymotrypsin-like protease, Hi-SP1, was cloned from the larvae of Hermetia illucens and characterized. In this study, we produced the recombinant chymotrypsin-like protease Hi-SP1 in Escherichia coli cells. The molecular weight of the recombinant Hi-SP1 was estimated to be approximately 26 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western-blotting. Chymotrypsin activity was detected when AAPF was used as the substrate. Examination of the effects of temperature and pH revealed that the proteolytic activity of recombinant Hi-SP1 decreased markedly at temperatures above $30^{\circ}C$, and the optimum pH was found to be 10.0.

The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment

  • Law, Fang Lin;Zulkifli, Idrus;Soleimani, Abdoreza Farjam;Liang, Juan Boo;Awad, Elmutaz Atta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1291-1300
    • /
    • 2018
  • Objective: This experiment was conducted to investigate the effects of dietary crude protein (CP) level and exogenous protease supplementation on growth performance, serum metabolites, carcass traits, small intestinal morphology and endogenous protease activity in broiler chickens reared under a tropical climate. Methods: A total of 480 day-old male broiler chicks were randomly assigned to eight dietary treatments in a $4{\times}2$ factorial arrangement. The main effects were CP level (21.0%, 19.7%, 18.5%, or 17.2% from 1 to 21 days and 19.0%, 17.9%, 16.7%, or 15.6% from 22 to 35 days) and protease enzyme supplementation (0 ppm or 500 ppm). All experimental diets were fortified with synthetic feed-grade lysine, methionine, threonine and tryptophan to provide the minimum amino acid recommended levels for Cobb 500. Results: Reducing dietary CP linearly reduced (p<0.05) growth performance, serum albumin, total protein, and carcass traits and increased (p<0.05) serum triglycerides and abdominal fat. There was no consistent effect of reducing dietary CP on morphological parameters of the intestine and on the pancreatic and intestinal endogenous protease activity (p>0.05). Protease supplementation improved (p<0.05) feed conversion ratio, body weight gain, carcass yield and intestinal absorptive surface area. Conclusion: Protease supplementation, as measured by growth performance, intestinal morphology and carcass yield, may alleviate the detrimental effects of low protein diets in broiler chickens.

The production of Alkaline Protease by Aspergillus fumigatus and Purification of Enzyme (Aspergillus fumigatus에 의한 Alkaline Protease의 생산과 정제)

  • Cha, Woen-Suep;Cho, Young-Je;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.3
    • /
    • pp.279-286
    • /
    • 1989
  • The alkaline protease producing mold isolated from and identified as Aspergillus fumigatus. It was found that the production of alkaline protease reach to maximum was cultured for 3 days at $30^{\circ}C$. The enzyme was purified 86.13 fold and yield of the enzyme purification was 6.4%, The purification procedure include ammonium sulfate treatment, gelfiltration on Sephadex G-25, G-75, G-150 and DEAE-cellulose ion-exchange chromatography. When the purified enzyme was applied sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the molecular weight was estimated about 63000. This enzyme composed 17 amino acids and main amino acids of this enzyme were glycine and glutamic acid.

  • PDF

Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes (우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향)

  • Shin, Hanseob;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.

Purification of a Protease Produced by Bacillus subtilis PCA 20-3 Isolated from Korean Traditional Meju (전통 메주로부터 분리한 Bacillus subtilis PCA 20-3 유래 Protease 의 정제)

  • Lim, Seong-Il;Yoo, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1635-1641
    • /
    • 1999
  • Bacillus subtilis PCA20-3 was isolated from meju and was found to produce a protease. The strain produced the maximum amount of enzyme in the medium containing soytone (0.2%), soluble starch (2%), $(NH_4)_2SO_4\;(0.1%),\;CaCl_2(0.1%),\;yeast\;extract\;(0.01%),\;K_2HPO_4\;(0.1%),\;and\;KH_2PO_4\;(0.1%)$. Protease was first concentrated by ammonium sulfate (80% saturation, w/v) precipitation of culture supernatant. Then the enzyme was purified by column chromatography using CM Sephadex C-50. The collected proteins were rechromatographed using Sephadex G-100 gel filtration column. The fraction with protease active from Sephadex G-100 gel chromatography was found to be pure when examined by SDS-polyacrylamide gel electrophoresis and YMC-pak reverse phase chromatography. Specific activity, yield and purity were 76 U/mg. 2.7%, and 7.6 fold, respectively. The molecular weight of the enzyme was estimated to be 31.5 kDa by SDS-PAGE. The number of amino acids calculated from molecular weight was evaluated about 321 residues. N-terminal sequence of the enzyme was $Val^1-Pro^2-Tyr^3-Gly^4-Val^5-Ser^6-Gln^7-Gly^8-Lys^9-Ala^{10}$.

  • PDF

Effects of Raw Materials and Various Molds on the Production of Koji

  • Yi, Sang-Duk;Yang, Jae-Seung;Lee, Gyu-Hee;Park, Seong-Hyun;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.2
    • /
    • pp.101-106
    • /
    • 2001
  • Alpha-amylase and glucoamylase activities were higher in koji with 40% water than that with 30 and 50% water, and A. oryzae exhibited very high alpha-amylase and glucoamylase activities compared to A. sojae and A. niger. Acidic, neutral and alkaline protease activities also showed higher activities in koji prepared with flour, Korean wheat powder and soybean powder with 40% water based on the weight of the sample. Alpha-amylase, acidic, neutral and alkaline protease activities of all the koji samples according to incubation periods increased until 3~4 days of incubation and maintained nearly the same level or slightly decreased after 5 days of incubation. The protease activities of A. oryzae and A. sojae showed nearly the same trend regardless of differences in substrate conditions and koji materials, but those of A. niger showed a lower activity than those of A. oryzae and A. sojae. These results suggest that the preparation of koji is possible with Korean wheat powder and soybean powder and A. sojae can be utilized as a new strain for fermented foods using soybean as the main materials to increase functional properties and produce products having a new taste and flavor.

  • PDF

Could Natural Products Confer Inhibition of SARS-CoV-2 Main Protease? In-silico Drug Discovery

  • Mohamed-Elamir F Hegazy
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.14-14
    • /
    • 2020
  • In December 2019, the COVID-19 epidemic was discovered in Wuhan, China, and since has disseminated around the world impacting human health for millions. Herein, in-silico drug discovery approaches were utilized to identify potential candidates as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) inhibitors. We investigated several databases including natural and natural-like products (>100,000 molecules), DrugBank database (10,036 drugs), major metabolites isolated from daily used spices (32 molecules), and current clinical drug candidates for the treatment of COVID-19 (18 drugs). All tested compounds were prepared and screened using molecular docking techniques. Based on the calculated docking scores, the top ones from each project under investigation were selected and subjected to molecular dynamics (MD) simulations followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. Combined long MD simulations and MM-GBSA calculations revealed the potent compounds with prospective binding affinities against Mpro. Structural and energetic analyses over the simulated time demonstrated the high stabilities of the selected compounds. Our results showed that 4-bis([1,3]dioxolo)pyran-5-carboxamide derivatives (natural and natural-like products database), DB02388 and Cobicistat (DB09065) (DrugBank database), salvianolic acid A (spices secondary metabolites) and TMC-310911 (clinical-trial drugs database) exhibited high binding affinities with SARS-CoV-2 Mpro. In conclusion, these compounds are up-and-coming anti-COVID-19 drug candidates that warrant further detailed in vitro and in vivo experimental estimations.

  • PDF

Anti-inflammatory Effects of Haepyoijin-tang in Aspergillus Oryzae Protease Induced Respiratory Inflammation Model (Aspergillus oryzae protease 유도 호흡기 염증모델에서 해표이진탕(解表二陳湯)의 항염증 효과)

  • Bo-In Kwon;Joo-Hee Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Haepyoijin-tang and its main components have been used for phlegm, cough and dyspnea. Using a respiratory inflammation model, we intend to reveal the anti-inflammatory effect and pharmacological mechanism of Haepyoijin-tang. We induced the respiratory inflammation model by Aspergillus oryzae protease and ovalbumin administration. Female Balb/c mice (8 weeks old) were classified into four groups as follows: saline control group, aspergillus oryzae protease and ovalbumin induced respiratory inflammation group (vehicle), inflammation with Haepyoijin-tang (200 mg/kg) administration group, inflammation with dexamethasone (5 mg/kg) administration group (n=7). To identify the anti-inflammatory effects of Haepyoijin-tang water extracts, we measured the inflammatory cell number in bronchoalveolar lavage fluid (BALF) and total live lung cell number. In addition, we checked eosinophil ratio and number in BALF. And Interleukin (IL)-5 level was also measured in lung cell culture supernatant. To confirm the mechanism of anti-inflammatory effects, we analyzed the activated helper T cell (CD4+CD25+ cell) and Th2 cell (CD4+GATA3+ cell) ratio and number in lung by using flow cytometry. Finally, we attempted to confirm the immune mechanism by measuring the ratio and number of regulatory T cells (CD4+Foxp3+ cell). Haepyoijin-tang extracts treatment diminished inflammatory cell, especially, eosinophil number in BALF and total live lung cell number. Moreover, IL-5 level was reduced in Haepyoijin-tang treated group. Surprisingly, Haepyoijin-tang extracts administration not only decreased the activated helper T cell but also Th2 cell population in lung. Additionally, regulatory T cell population was increased in Haepyoijin-tang administration group. Our findings proved that Haepyoijin-tang extract have anti-inflammatory efficacy by suppressing Th2 cell activation and promoting regulatory T cell population.