• Title/Summary/Keyword: Main Steam Line Break

Search Result 40, Processing Time 0.034 seconds

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

EFFECTS OF AN ORIFICE-TYPE FLOW RESTRICTOR ON THE TRANSIENT THERMAL-HYDRAULIC RESPONSE OF THE SECONDARY SIDE OF A PWR STEAM GENERATOR TO A MAIN STEAM LINE BREAK (가압경수로 주증기관 파단시 증기발생기 2차측 과도 열수력 응답에 미치는 오리피스형 유량제한기의 영향)

  • Jo, J.C.;Min, B.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, a numerical analysis was performed to simulate the thermal-hydraulic response of the secondary side of a steam generator(SG) model equipped with an orifice-type SG outlet flow restrictor to a main steam line break(MSLB) at a pressurized water reactor(PWR) plant. The SG analysis model includes the SG upper steam space and the part of the main steam pipe between the SG outlet and the broken pipe end. By comparing the numerical calculation results for the present SG model to those obtained for a simple SG model having no flow restrictor, the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB were investigated.

Phenomena Identification and Ranking Table for the APR-1400 Main Steam Line Break

  • Song, J.H.;Chung, B.D.;Jeong, J.J.;Baek, W.P.;Lee, S.Y.;Choi, C.J.;Lee, C.S.;Lee, S.J.;Um, K.S.;Kim, H.G.;Bang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.388-402
    • /
    • 2004
  • A phenomena identification and ranking table(PIRT) was developed for a main steam line break (MSLB) event for the Advanced Power Reactor-1400 (APR-1400). The selectee event was a double-ended steam line break at full power, with the reactor coolant pump running. The developmental panel selected the fuel performance as the primary safety criterion during the ranking process. The plant design data, the results of the APR-1400 safety analysis, and the results of an additional best-estimate analysis by the MARS computer code were used in the development of the PIRT. The period of the transient was composed of three phases: pre-trip, rapid cool-down, and safety injection. Based on the relative importance to the primary evaluation criterion, the ranking of each system, component, and phenomenon/process was performed for each time phase. Finally, the knowledge-level for each important process for certain components was ranked in terms of existing knowledge. The PIRT can be used as a guide for planning cost-effective experimental programs and for code development efforts, especially for the quantification of those processes and/or phenomena that are highly important, but not well understood.

Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations (고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Choi, Choengryul;Kim, Won Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

The MARS Simulation of the ATLAS Main Steam Line Break Experiment

  • Ha, Tae Wook;Yun, Byong Jo;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.112-122
    • /
    • 2014
  • A main steam line break (MSLB) test at the ATLAS facility was simulated using the best-estimate thermal-hydraulic system code, MARS-KS. This has been performed as an activity at the third domestic standard problem for code benchmark (DSP-03) that has been organized by Korea Atomic Energy Research Institute (KAERI). The results of the MSLB experiment and the MARS input data prepared for the previous DSP-02 using the ATLAS facility were provided to participants. The preliminary MSLB simulation using the base input data, however, showed unphysical results in the primary-to-secondary heat transfer. To resolve the problems, some improvements were implemented in the MARS input modelling. These include the use of fine meshes for the bottom region of the steam generator secondary side and proper thermal-hydraulics calculation options. Other input model improvements in the heat loss and the flow restrictor models were also made and the results were investigated in detail. From the results of simulations, the limitations and further improvement areas of the MARS code were identified.

Development of Main Steam Line Break Mass and Energy Release Analysis with RETRAN-3D Code

  • Park, Young-Chan;Kim, Yoo
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • An estimation methodology of the mass and energy (M/E) release due to the main steam line break (MSLB) has been developed with the RETRAN-3D code. In the case of equipment qualification (EQ), the over-estimated temperature would exceed the design limits of some cables or valves. In order to have a more flexible EQ profiles from the MSLB M/E release, the methodology with the best-estimated code was used. The major conditions affecting the MSLB M/E were found to be the initial SG level, heat transfer between primary and secondary sides, power level, operable protection system, main or auxiliary feedwater availability, and break conditions. The RETRAN-3D models were developed for the Kori unit 1 (KRN-1) which is typical two loop Westinghouse (WH) designed plant. Particularly, a detailed model of the steam generators was developed to estimate a more realistic two-phase heat transfer effect of the steam flow. After the modeling, the methodology has been developed through the sensitivity analyses. The M/E release data generated from the analyses have been used as the input to the inside containment pressure and temperature (P/T) analysis. According to the results at the point of view containment P/T, the Kori unit 1 can have more margin of 5∼15 ㎪ in pressure and 8∼15$^{\circ}C$ in temperature.

MARS/MASTER Solution to OECD Main Steam Line Break Benchmark Exercise III

  • Jeong, Jae-Jun;Joo, Han-Gyu;Chung, Bub-Dong;Ha, Kwi-Seok;Lee, Won-Jae;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.214-226
    • /
    • 2000
  • In an effort to assess the performance of KAERI's coupled 3D kinetics - system T/H code, MARS/MASTER, Exercise III of the OECD main steam line break benchmark is solved. The analysis model of the reference plant, TMI-1 - a 2772 MWth B&W plant, consists of three major components: a core neutronics model involving 241$\times$28 neutronic nodes, a vessel 3D T/H model consisting of 374 hydrodynamic volumes, and a 1D system T/H model containing 157 hydrodynamic volumes. The results show that there is a significant amount of flow mixing occurring in the upper and lower plenum regions and the core power distribution evolves to a highly localized shape due to the presence of a stuck rod, as well as the asymmetric flow distribution. It is judged that MARS/MASTER properly captures these drastic 3-dimensional effects. Comparisons with other results submitted to OECD confirm the accuracy of the MARS/MASTER solution.

  • PDF

Pressurized Thermal Shock Analyses of Reactor Pressure Vessel for Main Steam Line Break (주증기관 파단사고에 대한 원자로 용기의 가압열충격 해석)

  • 정명조;박윤원;장창희;정일석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.271-279
    • /
    • 1999
  • 본 연구에서는 국내에서 가장 취약할 것으로 예상되는 원자력 발전소에 가압열충격 사고를 유발할 수 있는 주증기관 파단사고를 가정하여 열수력 해석과 파괴역학 해석을 수행하였다. 원전수명관리연구의 일환으로 계통열수력 해석 및 혼합열유동 해석에 의하여 구한 냉각제의 온도와 압력의 이력 및 용기의 재질성분으로부터 용기의 응력확대계수와 파괴인성치를 계산하고 이들을 비교하여 균열의 진전여부를 판단하여 형상계수가 1/6인 표면균열이 견딜 수 있는 최대 기준무연성천이온도를 결정하였다.

  • PDF

A numerical study on convective heat transfer characteristics at the vessel surface of the Korean Next Generation Reactor (차세대 원자로 용기내 vessel 내면에서의 대류 열전달특성에 관한 수치해석적 연구)

  • Jung, S.D.;Kim, C.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.228-233
    • /
    • 2000
  • The Korean Next Generation Reactor(KNGR) is a Pressurized Water Reactor adopting direct vessel injection(DVI) to optimize the performance of emergency core cooling system(ECCS). In a certain accident, however, pressurized thermal shock(PTS) of the vessel due to the sudden contact with the injected cold water is expected. In this paper, an accident of Main Steam Line Break(MSLB) has been numerically investigated with direct vessel injections and an increased volume flow rate in some cold legs. Using FLUENT code, temperature distributions of the fluid in the downcomer and of reactor vessel including the core region have been calculated, together with the distribution of convective heat transfer coefficient(CHTC) at the cladding surface of the reactor vessel. The result shows that some parts of the core region of the reactor vessel have higher temperature gradient expressing higher thermal stress.

  • PDF