• Title/Summary/Keyword: Main Shaft

Search Result 275, Processing Time 0.028 seconds

Effects of Main Shaft Velocity on Turbidity and Quality of White Rice in a Rice Processing System

  • Cho, Byeong-Hyo;Kang, Tae-Hwan;Won, Jin-Ho;Kang, Shin-Hyeong;Lee, Hee-Sook;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Purpose: The purpose of this study is to analyze turbidity and quality characteristics of white rice as a function of main shaft blast velocity and to verify the optimum processing conditions in the cutting type white rice processing system (CTWRPS). Methods: Sindongjin, one of the rice varieties, which used to be produced in Gimje-si, Jeollabuk-do, in 2015, was used as the experimental material. Turbidity and quality characteristics of white rice were measured at three different main shaft blast velocities: 25, 30, and 35 m/s. The amount of test material used for a single experiment was 20 kg, and after processing, whiteness was found to be $42.5{\pm}0.5$, following which, turbidity and quality characteristics were measured. Results: Turbidity decreased with increase in the shaft blast velocity, and as a result, was lowest at 35 m/s of shaft blast velocity among all the other experiment velocities. The trend of cracked rice ratios was similar to the turbidity. Broken rice ratio turned out to be less than 2.0% in all the test conditions. In the first stage of processing, the processing pressure decreased as the main shaft blast velocity increased. Additionally, in the second stage of processing, the processing pressure was at its lowest value at the main shaft blast velocity of 35 m/s. Energy consumption, too, decreased as the main shaft blast velocity was increased. Conclusions: From the above results, it is concluded that the main shaft blast velocity of 35 m/s is best for reducing turbidity and producing high quality rice in a CTWRPS.

A study on the blood collecting device of main shaft injection molding for measuring blood glucose by CAE analysis (혈당 측정을 위한 채혈기구 메인 샤프트의 사출성형 시뮬레이션 및 시 사출에 관한 연구)

  • Baek, Seung Yub
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2018
  • In diabetics, daily blood glucose testing is generally required at home, and thus, performing blood collection several times a day using a blood line is essential. Blood collection in the home and in the hospital is a source of pain and is the second most common cause of infection. In blood collecting device generally consists of four major parts: inner-case, outer case, main shaft and triger, and the most import part among those for necessary functionality is the main shaft. Filling time and injection pressure, filling balance, strain-rate analysis of change based on availability of the product. The Moldflow of FEM simulation is used for the analysis of injection molding process. In this study, aims to create a technique for injection molding and manufacturing of a main shaft of a high-performance blood-collecting apparatus capable of automatically extracting a lancet to relieve pain through depth control of the lancet.

Study on the Load Properties of Main Shaft of Medium Size Wind-turbine Gearbox using Monitoring (모니터링을 이용한 중형 풍력발전기용 증속기 주축의 부하특성 분석 연구)

  • Park, Young-Joon;Lee, Geun-Ho;Lee, Jong-Won;Nam, Yoon-Su;Cha, Jong-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.378-382
    • /
    • 2007
  • To improve the reliability for a wind-turbine gearbox, the mechanical loads acting on the gearbox need to be monitored and analysed exactly. This study was conducted to identify the characteristics of torques and bending moments acting on the main shaft of the gearbox using the rainflow counting method and predict the fatigue life of the main shaft by using the modified Miner's rule. While the mean wind speed became 3.5 m/s, the life of the main shaft by the acting torques was predicted as 4.3${\times}10^6$ years, and it by the bending moments was as 2.3${\times}10^4$ years. If the life of the wind turbine was estimated as 20 years, the fatigue life of the main shaft was regarded as infinite. Also, it was suggested that the life of the main shaft must be predicted by not the torques but the bending moments.

  • PDF

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

Behavior of a Balance Shaft regarding Unbalance Mass Distribution (밸런스 샤프트 불평형 질량의 분포에 따른 동적 거동 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun;Kwon, Sung-Jin;Kim, Hyun-Chul;Lee, Dong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.101-106
    • /
    • 2006
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part has its own operational characteristics, some different analysis backgrounds should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft is rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as cancelling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verifed with structural and fatigue analysis and most appropriate model is proposed here.

  • PDF

Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition (비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Kwon, Sung-Jin;Lee, Bong-Hyun;Kim, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

Selection issue on the balance shaft for a inline 4-cylinder engine as how to locate both supporting bearing and unbalance mass (직렬 4기통 엔진용 밸런스 샤프트 불평형 질량과 베어링 위치 선정 방법)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.801-806
    • /
    • 2008
  • Large quantity of bending deformation as well as rotating torque fluctuation at the balance shaft are main struggles during the operation in a high speed rotation and thereby, two issues should be cleared at the design process of balance shaft module. Since two issues are highly related with balance shaft itself and particularly much sensitive to the location of both supporting bearing and unbalance mass, the design strategy on balance shaft should be investigated at the aspect of controlling two critical issues at the early stage of balance shaft design. To tackle two main problems, the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation, is suggested to derive the optimal information on balance shaft. Then, optimal informations are reviewed at the practical logics and the guideline at the selection of locations, both supporting bearing and unbalance mass, is addressed at the final chapter.

  • PDF

A Study on Characteristic Analysis of Shaft Electromotive Force in SAEYUDAL (새유달호 축기전력의 특성 분석에 관한 연구)

  • Ahn, Byong-Won;Im, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.28-31
    • /
    • 2015
  • Electromotive forces (EMF) are generated by electrical equipment and engine shafting with a number of reasons. The shaft and bearing which is insulated by lubricating oil acts as a condenser, being able to store this EMFs. The electromotive force on the hull and shaft, with very few exceptions, has anode voltage on it. Electrical spark of the anode voltage on the shaft may lead to corrosion. Hence, in order to prevent ship's shaft and propeller corrosion, shaft grounding system are installed and operated. The shaft EMF voltage measurement methods was measured using 24bit 2 channels A/D converter of NI company and Labview software. 1 channel was propeller shaft's voltage and the other was M/E engine rpm gauge. In this paper, the generated electromotive force was analyzed and modeled with result of the analysis. As a result, the main shaft's electromotive force was in direct proportion to the main engine's revolution. However, over the specific R.P.M., it was reduced gradually. In addition, higher electromotive force on the shaft was identified during engine's ahead direction than the astern direction. The generated electromotive force is only minor compared to the shaft grounding system.

Mechatronic Control Model of the Wind Turbine with Transmission to Split Power

  • Zhang Tong;Li Wenyong;Du Yu
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.533-541
    • /
    • 2005
  • In this paper, a wind turbine with power splitting transmission, which is realized through a novel three-shaft planetary, is presented. The input shaft of the transmission is driven by the rotor of the wind turbine, the output shaft is connected to the grid via the main generator (asynchronous generator), and the third shaft is driven by a control motor with variable speed. The dynamic models of the sub systems of this wind turbine, e.g. the rotor aerodynamics, the drive train dynamics and the power generation unit dynamics, were given and linearized at an operating point. These sub models were integrated in a multidisciplinary dynamic model, which is suitable for control syntheses to optimize the utilization of wind energy and to reduce the excessive dynamic loads. The important dynamic behaviours were investigated and a wind turbine with a soft main shaft was recommend.